Relation Between PTH and Biochemical Markers of MBD

  • Pablo A. Ureña-TorresEmail author
  • Jordi Bover
  • Martine Cohen-Solal


Chronic kidney disease (CKD) is often associated with bone disorders including secondary hyperparathyroidism, aluminum-related low turnover bone disease, osteomalacia, adynamic osteopathy, osteoporosis, and skeletal ß2-microglobulin amyloid deposits. In spite of the enormous progress made during the last few years in the search of non-invasive methods to assess bone metabolism, still the distinction between high and low turnover bone diseases in these patients, frequently requires invasive and/or costly procedures such as bone biopsy after double tetracycline labeling, scintigraphic-scan studies, computed tomography, densitometry, and kinetic studies with radiolabeled molecules. This review assesses the relation of parathyroid hormone (PTH) with old and the most recent biomarkers of bone metabolism in the diagnosis and monitoring of CKD bone disease. It evaluates the metabolism of collagen-related proteins such as type I collagen C- and N-terminal pro-peptides (P1NP and PICP), and collagen crosslinked molecules in the assessment of ROD, as well as the non-collagenous proteins such as bone-specific alkaline phosphatase (BSAP) and tartrate-resistant acid phosphatase (TRAP5b). New molecules such as fibroblast growth factor 23 (FGF23), klotho, sclerostin and Dkk1 could also emerge as interesting biomarkers of bone metabolism. The future use of these markers, individually or in combination with PTH will undoubtedly improve the diagnosis and the treatment of the complex ROD.


Alkaline phosphatases Bone remodeling Calcium Phosphate Magnesium Vitamin D Bone mineral density Fracture 



PAUT has received consulting fee from Amgen, Astellas, Abbvie, AstraZeneca, GSK, Hemotech, Fresenius and Vifor Pharma FMC. JB has not received consulting fees related to this work.


  1. 1.
    KDIGO. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009(113):S1–130.Google Scholar
  2. 2.
    Bover J, Urena P, Brandenburg V, et al. Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol. 2014;34(6):626–40.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Potts JT. Parathyroid hormone: past and present. J Endocrinol. 2005;187(3):311–25.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wein MN, Kronenberg HM. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med. 2018;8(8).Google Scholar
  5. 5.
    Barreto FC, Barreto DV, Moyses RM, et al. K/DOQI-recommended intact PTH levels do not prevent low-turnover bone disease in hemodialysis patients. Kidney Int. 2008;73(6):771–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Baron R. Anatomy and Ultrastructure of Bone. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 2nd ed. New York: Raven Press, Ltd; 1993. p. 3–9.Google Scholar
  7. 7.
    Jilka RL, O’Brien CA, Ali AA, et al. Intermittent PTH stimulates periosteal bone formation by actions on post-mitotic preosteoblasts. Bone. 2009;44(2):275–86.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Thomas T. Intermittent parathyroid hormone therapy to increase bone formation. Joint Bone Spine. 2006;73(3):262–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Floege J, Kim J, Ireland E, et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant. 2011;26(6):1948–55.PubMedCrossRefGoogle Scholar
  10. 10.
    Brossard J, Cloutier M, Roy L, et al. Accumulation of a non-(1-84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: importance in the interpretation of PTH values. J Clin Endocrinol Metab. 1996;81:3923–9.PubMedGoogle Scholar
  11. 11.
    Qi Q, Monier-Faugere MC, Geng Z, et al. Predictive value of serum parathyroid hormone levels for bone turnover in patients on chronic maintenance dialysis. Am J Kidney Dis. 1995;26(4):622–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Urena P, Ferreira A, Kung VT, et al. Serum pyridinoline as a specific marker of collagen breakdown and bone metabolism in hemodialysis patients. J Bone Miner Res. 1995;10(6):932–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Urena P, Kong XF, Abou-Samra AB, et al. Parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acids are widely distributed in rat tissues. Endocrinology. 1993;133(2):617–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Ma YL, Cain RL, Halladay DL, et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology. 2001;142(9):4047–54.PubMedCrossRefGoogle Scholar
  16. 16.
    Bilezikian JP, Brandi ML, Eastell R, et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J Clin Endocrinol Metab. 2014;99(10):3561–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Urena P, Kubrusly M, Mannstadt M, et al. The renal PTH/PTHrP receptor is down-regulated in rats with chronic renal failure. Kidney Int. 1994;45(2):605–11.PubMedCrossRefGoogle Scholar
  18. 18.
    Moranne O, Froissart M, Rossert J, et al. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009;20(1):164–71.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Geng Y, Mosyak L, Kurinov I, et al. Structural mechanism of ligand activation in human calcium-sensing receptor. Elife. 2016;5.Google Scholar
  20. 20.
    Rodriguez M, Nemeth E, Martin D. The calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism. Am J Physiol Renal Physiol. 2005;288(2):F253–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Komaba H, Fukagawa M. FGF23: a key player in mineral and bone disorder in CKD. Nefrologia. 2009;29(5):392–6.PubMedGoogle Scholar
  22. 22.
    Urena P, Basile C, Grateau G, et al. Short-term effects of parathyroidectomy on plasma biochemistry in chronic uremia. Kidney Int. 1989;36(1):120–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Prie D, Beck L, Urena P, et al. Recent findings in phosphate homeostasis. Curr Opin Nephrol Hypertens. 2005;14(4):318–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Urena Torres PA, Cohen-Solal M. Not all hyperphosphataemias should be treated. Nephrol Dial Transplant. 2018.Google Scholar
  25. 25.
    Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. Biometals. 2002;15:203–10Google Scholar
  26. 26.
    Vetter T, Lohse MJ. Magnesium and the parathyroid. Curr Opin Nephrol Hypertens. 2002;11(4):403–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Kawata T, Nagano N. The calcium receptor and magnesium metabolism. Clin Calcium. 2005;15(11):43–50.PubMedGoogle Scholar
  28. 28.
    Rodriguez-Ortiz ME, Canalejo A, Herencia C, et al. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration. Nephrol Dial Transplant. 2014;29(2):282–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Navarro JF, Mora C, Jimenez A, et al. Relationship between serum magnesium and parathyroid hormone levels in hemodialysis patients. Am J Kidney Dis. 1999;34(1):43–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Navarro JF, Mora C, Macia M, et al. Serum magnesium concentration is an independent predictor of parathyroid hormone levels in peritoneal dialysis patients. Perit Dial Int. 1999;19(5):455–61.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Fournier A, Oprisiu R, Moriniere P, et al. Low doses of calcitriol or calcium carbonate for the prevention of hyperparathyroidism in predialysis patients? Nephrol Dial Transplant. 1996;11(7):1493–5.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Sakaguchi Y, Fujii N, Shoji T, et al. Magnesium modifies the cardiovascular mortality risk associated with hyperphosphatemia in patients undergoing hemodialysis: a cohort study. PLoS ONE. 2014;9(12):e116273.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Urena-Torres P, Metzger M, Haymann JP, et al. Association of kidney function, vitamin D deficiency, and circulating markers of mineral and bone disorders in CKD. Am J Kidney Dis. 2011;58(4):544–53.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Metzger M, Houillier P, Gauci C, et al. Relation between circulating levels of 25(OH) vitamin D and parathyroid hormone in chronic kidney disease: quest for a threshold. J Clin Endocrinol Metab. 2013;98(7):2922–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Molina P, Gorriz JL, Molina MD, et al. What is the optimal level of vitamin D in non-dialysis chronic kidney disease population? World J Nephrol. 2016;5(5):471–81.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Burnett-Bowie SM, Henao MP, Dere ME, et al. Effects of hPTH(1-34) infusion on circulating serum phosphate, 1,25-dihydroxyvitamin D, and FGF23 levels in healthy men. J Bone Miner Res. 2009;24(10):1681–5.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Komaba H, Fukagawa M. FGF23-parathyroid interaction: implications in chronic kidney disease. Kidney Int. 2010;77(4):292–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gutierrez O, Isakova T, Rhee E, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Canalejo R, Canalejo A, Martinez-Moreno JM, et al. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol. 2010;21(7):1125–35.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Krajisnik T, Bjorklund P, Marsell R, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195(1):125–31.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Nakanishi S, Kazama JJ, Nii-Kono T, et al. Serum fibroblast growth factor-23 levels predict the future refractory hyperparathyroidism in dialysis patients. Kidney Int. 2005;67(3):1171–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Sato T, Tominaga Y, Ueki T, et al. Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am J Kidney Dis. 2004;44(3):481–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Moe SM, Chertow GM, Parfrey PS, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial. Circulation. 2015;132(1):27–39.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Block GA, Bushinsky DA, Cheng S, et al. Effect of etelcalcetide vs. cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA. 2017;317(2):156–64.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA. 2001;98(11):6500–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wesseling-Perry K, Pereira RC, Wang H, et al. Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab. 2009;94(2):511–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Murali SK, Andrukhova O, Clinkenbeard EL, et al. Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in hyp mice. PLoS Biol. 2016;14(4):e1002427.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bover J, Urena P, Aguilar A, et al. Alkaline phosphatases in the complex chronic kidney disease-mineral and bone disorders. Calcif Tissue Int. 2018;103(2):111–24.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mazzaferro S, Tartaglione L, Rotondi S, et al. News on biomarkers in CKD-MBD. Semin Nephrol. 2014;34(6):598–611.PubMedCrossRefGoogle Scholar
  51. 51.
    Urena P, De Vernejoul MC. Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int. 1999;55(6):2141–56.PubMedCrossRefGoogle Scholar
  52. 52.
    Haarhaus M, Fernstrom A, Magnusson M, et al. Clinical significance of bone alkaline phosphatase isoforms, including the novel B1x isoform, in mild to moderate chronic kidney disease. Nephrol Dial Transplant. 2009;24(11):3382–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Couttenye MM, D’Haese PC, VanHoof VO, et al. Bone alkaline phosphatase (BAP) compared to PTH in the diagnosis of adynamic bone disease (ABD). Nephrol Dial Transplant. 1994;9:905 (Abst.).Google Scholar
  54. 54.
    Ueda M, Inaba M, Okuno S, et al. Serum BAP as the clinically useful marker for predicting BMD reduction in diabetic hemodialysis patients with low PTH. Life Sci. 2005;77(10):1130–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Urena P, Bernard-Poenaru O, Cohen-Solal M, et al. Plasma bone-specific alkaline phosphatase changes in hemodialysis patients treated by alfacalcidol. Clin Nephrol. 2002;57(4):261–73.PubMedCrossRefGoogle Scholar
  56. 56.
    Ferron M, McKee MD, Levine RL, et al. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50(2):568–75.PubMedCrossRefGoogle Scholar
  57. 57.
    Garnero P, Grimaux M, Seguin P, et al. Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res. 1994;9(2):255–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Rosenquist C, Qvist P, Bjarnason N, et al. Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin Chem. 1995;41(10):1439–45.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang M, Ni Z, Zhou W, et al. Undercarboxylated osteocalcin as a biomarker of subclinical atherosclerosis in non-dialysis patients with chronic kidney disease. J Biomed Sci. 2015;22:75.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Couttenye MM, D’Haese PC, VanHoof VO, et al. Low serum levels of alkaline phosphatase of bone origin: a good marker of adynamic bone disease in haemodialysis patients. Nephrol Dial Transplant. 1996;11:1065–72.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Couttenye MM, D’Haese PC, Deng J, et al. High prevalence of adynamic bone disease diagnosed by biochemical markers in a wide sample of the European CAPD population. Nephrol Dial Transplant. 1997;12:2144–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Cavalier E, Delanaye P, Collette J, et al. Evaluation of different bone markers in hemodialyzed patients. Clin Chim Acta. 2006;371(1–2):107–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Ueda M, Inaba M, Okuno S, et al. Clinical usefulness of the serum N-terminal propeptide of type I collagen as a marker of bone formation in hemodialysis patients. Am J Kidney Dis. 2002;40(4):802–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Nickolas TL, Cremers S, Zhang A, et al. Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol. 2011;22(8):1560–72.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dusceac R, Niculescu DA, Dobre R, et al. Chronic hemodialysis is associated with lower trabecular bone score, independent of bone mineral density: a case-control study. Arch Osteoporos. 2018;13(1):125.PubMedCrossRefGoogle Scholar
  66. 66.
    Yamada S, Inaba M, Kurajoh M, et al. Utility of serum tartrate-resistant acid phosphatase (TRACP5b) as a bone resorption marker in patients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol (Oxf). 2008;69(2):189–96.CrossRefGoogle Scholar
  67. 67.
    Shidara K, Inaba M, Okuno S, et al. Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int. 2008;82(4):278–87.PubMedCrossRefGoogle Scholar
  68. 68.
    Hamano T, Tomida K, Mikami S, et al. Usefulness of bone resorption markers in hemodialysis patients. Bone. 2009;45(Suppl 1):S19–25.PubMedCrossRefGoogle Scholar
  69. 69.
    Chu P, Chao TY, Lin YF, et al. Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis. 2003;41(5):1052–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Fujii N, Hamano T, Mikami S, et al. Risedronate, an effective treatment for glucocorticoid-induced bone loss in CKD patients with or without concomitant active vitamin D (PRIUS-CKD). Nephrol Dial Transplant. 2007;22(6):1601–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hamano T, Fujii N, Nagasawa Y, et al. Serum NTX is a practical marker for assessing antiresorptive therapy for glucocorticoid treated patients with chronic kidney disease. Bone. 2006;39(5):1067–72.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Behets GJ, Spasovski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;87(4):846–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Okuno S, Inaba M, Kitatani K, et al. Serum levels of C-terminal telopeptide of type I collagen: a useful new marker of cortical bone loss in hemodialysis patients. Osteoporos Int. 2005;16(5):501–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pablo A. Ureña-Torres
    • 1
    Email author
  • Jordi Bover
    • 2
  • Martine Cohen-Solal
    • 3
  1. 1.AURA Nord Saint Ouen, Department of Dialysis and Department of Renal Physiology, Necker HospitalUniversity of Paris DescartesParisFrance
  2. 2.Fundació Puigvert, Department of NephrologyBarcelonaSpain
  3. 3.INSERM U1132 & USPC Paris-Diderot; Department of Rheumatology; Hôpital LariboisièreParisFrance

Personalised recommendations