Advertisement

Fabrication and Characterization of Metakaolin Based Flat Sheet Membrane for Membrane Distillation

  • Tsegahun Mekonnen ZewdieEmail author
  • Nigus Gabbiye Habtu
  • Abhishek Dutta
  • Bart Van der Bruggen
Conference paper
  • 36 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 308)

Abstract

A low-cost flat sheet kaolin/metakaolin membrane was fabricated via a combined using phase inversion and sintering methods at different kaolin/metakaolin content and sintering temperature. The ceramic suspension with suitable viscosity was prepared by mixing the kaolin/metakaolin powder, Polyethersulfone(PESf) as a binder, N-methyl-2-pyrrolidone(NMP) as solvent and Polyvinylpyrrolidone(PVP) as a dispersant. The membrane precursor was then sintered in a controlled furnace to target temperature of 1200 ℃,1300 ℃, 1400 ℃ and 1500 ℃. Then, the surface of the kaolin/metakaolin membrane was modified by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFAS). Finally, the ceramic membrane was characterized using a scanning electron microscope (SEM) and a contact angle analyzer. It was found that by varying the kaolin/metakaolin contents and sintering temperatures; different surface morphologies of flat sheet membranes were obtained. Moreover, the successful grafting with PFAS was evidenced by the increase in contact angle from nearly equal to 3.7° to 142°. Thus, it can be generally concluded that the metakaolin based flat sheet membrane has desirable characteristics for membrane distillation applications in terms of hydrophobic effect and chemical stability (<1% weight loss).

Keywords

Metakaolin Ceramic membrane Phase inversion Sintering Membrane distillation Grafting 

Notes

Acknowledgments

The authors would like to thank and appreciate the Ethiopian government/Ministry of Higher Education and Germany government for its financial support and special thanks to the KU Leuven and the Bahir dar University, for providing necessary facilities for this research.

References

  1. 1.
    Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H., Drioli, E.: Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J. Membr. Sci. 323, 85–98 (2008)CrossRefGoogle Scholar
  2. 2.
    El-Bourawia, M.S., Ding, Z., Ma, R., Khayet, M.: A framework for better understanding membrane distillation separation process. J. Membr. Sci. 285, 4–29 (2006)CrossRefGoogle Scholar
  3. 3.
    Banat, F., Jwaied, N.: Economic evaluation of desalination by small-scale autonomous solar-powered membrane distillation units. Desalination 220, 566–573 (2008)CrossRefGoogle Scholar
  4. 4.
    Galvez, J.B., Garcia-Rodriguez, L., Martin-Mateos, I.: Seawater desalination by an innovative solar-powered membrane distillation system: the MEDESOL project. Desalination 246, 567–576 (2009)CrossRefGoogle Scholar
  5. 5.
    Bouguecha, S.T., Aly, S.E., Al-Beirutty, M.H., Hamdi, M.M., Boubakri, A.: Solar driven DCMD: performance evaluation and thermal energy efficiency. Chem. Eng. Res. Des. 100, 331–340 (2015)CrossRefGoogle Scholar
  6. 6.
    Alklaibi, A.M., Lior, N.: Membrane-distillation desalination: status and potential. Desalination 171, 111–131 (2004)CrossRefGoogle Scholar
  7. 7.
    Gazagnes, L., Cerneaux, S., Persin, M., Prouzet, E., Larbot, A.: Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes. Desalination 217, 260–266 (2007)CrossRefGoogle Scholar
  8. 8.
    Fang, H., Gao, J.F., Wang, H.T., Chen, C.S.: Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. J. Membr. Sci. 403–404, 41–46 (2012)CrossRefGoogle Scholar
  9. 9.
    Khemakhem, S., Amar, R.B.: Modification of Tunisian clay membrane surface by silane grafting: application for desalination with Air Gap Membrane Distillation process. Colloids and Surf., A 387(1–3), 79–85 (2011). 0927–7757CrossRefGoogle Scholar
  10. 10.
    Hubadillah, S.K., Harun, Z., Othman, M.H.D., Ismail, A.F., Gani, P.: Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique. J. Asian Ceram. Soc. 4(2), 164–177 (2016)CrossRefGoogle Scholar
  11. 11.
    Wang, J.-W., Li, L., Zhang, J.-W., Xu, X., Chen, C.-S.: β-Sialon ceramic hollow fiber membranes with high strength and low thermal conductivity for membrane distillation. J. Eur. Ceram. Soc. 36(1), 59–65 (2016). 0955–2219CrossRefGoogle Scholar
  12. 12.
    Das, R., Sondhi, K., Majumdar, S., Sarkar, S.: Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation. J. Asian Ceram. Soc. 4(3), 243–251 (2016). 2187–0764CrossRefGoogle Scholar
  13. 13.
    Gentleman, M.M., Ruud, J.A.: Role of hydroxyls in oxide wettability. Langmuir 26, 1408–1411 (2010)CrossRefGoogle Scholar
  14. 14.
    Kayvani Fard, A., et al.: Review: inorganic membranes preparation and application for water treatment and desalination. J. Mater. 11, 74 (2018)CrossRefGoogle Scholar
  15. 15.
    Wang, J.-W., et al.: Porous ß-Sialon planar membrane with a robust polymer derived hydrophobic ceramic surface. J. Membr. Sci. 535, 63–69 (2017)CrossRefGoogle Scholar
  16. 16.
    Picard, C., Larbot, A., Tronel-Peyroz, E., Berjoan, R.: Characterization of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes. Solid State Sci. 6, 605–612 (2004)CrossRefGoogle Scholar
  17. 17.
    Hendren, Z.D., Brant, J., Wiesner, M.R.: Surface modification of nanostructured ceramic membranes for direct contact membrane distillation. J. Membr. Sci. 331, 1–10 (2009)CrossRefGoogle Scholar
  18. 18.
    Cerneaux, S., Strużyńska, I., Kujawski, W.M., Persin, M., Larbot, A.: Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. J. Membr. Sci. 337(1–2), 55–60 (2009). 0376–7388CrossRefGoogle Scholar
  19. 19.
    Lungu, A., Perrin, F.X., Belec, L., Sarbu, A., Teodorescu, M.: Kaolin/poly (acrylic acid) composites as precursors for porous kaolin ceramics. Appl. Clay Sci. 62, 63–69 (2012)CrossRefGoogle Scholar
  20. 20.
    Ismadji, S., Soetaredjo, F.E., Ayucitra, A.: Clay Materials for Environmental Remediation. SMS. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16712-1CrossRefGoogle Scholar
  21. 21.
    Khemakhem, M., Khemakhem, S., Amar, R.B.: Surface modification of microfiltration ceramic membrane by fluoroalkylsilane. Desalin. Water Treat. 52, 1786–1791 (2014)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  • Tsegahun Mekonnen Zewdie
    • 1
    • 3
    Email author
  • Nigus Gabbiye Habtu
    • 1
  • Abhishek Dutta
    • 2
  • Bart Van der Bruggen
    • 3
  1. 1.Department of Chemical Engineering, Faculty of Chemical and Food EngineeringBahir Dar UniversityBahir DarEthiopia
  2. 2.Faculty of Engineering TechnologyKU Leuven, Campus Groep T Leuven, Technologiecluster MaterialentechnologieLeuvenBelgium
  3. 3.Department of Chemical Engineering, Faculty of EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations