Advertisement

Identifying Historical Travelogues in Large Text Corpora Using Machine Learning

  • Jan RördenEmail author
  • Doris Gruber
  • Martin Krickl
  • Bernhard Haslhofer
Conference paper
  • 168 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12051)

Abstract

Travelogues represent an important and intensively studied source for scholars in the humanities, as they provide insights into people, cultures, and places of the past. However, existing studies rarely utilize more than a dozen primary sources, since the human capacities of working with a large number of historical sources are naturally limited. In this paper, we define the notion of travelogue and report upon an interdisciplinary method that, using machine learning as well as domain knowledge, can effectively identify German travelogues in the digitized inventory of the Austrian National Library with F1 scores between 0.94 and 1.00. We applied our method on a corpus of 161,522 German volumes and identified 345 travelogues that could not be identified using traditional search methods, resulting in the most extensive collection of early modern German travelogues ever created. To our knowledge, this is the first time such a method was implemented for the bibliographic indexing of a text corpus on this scale, improving and extending the traditional methods in the humanities. Overall, we consider our technique to be an important first step in a broader effort of developing a novel mixed-method approach for the large-scale serial analysis of travelogues.

Keywords

Travelogues Machine learning Digital humanities 

Notes

Acknowledgments

The work in the Travelogues project (http://www.travelogues-project.info) is funded through an international project grant by the Austrian Science Fund (FWF, Austria: I 3795) and the German Research Foundation (DFG, Germany: 398697847).

References

  1. 1.
    Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
  2. 2.
    Agai, B., Conermann, S. (eds.): “Wenn einer eine Reise tut, hat er was zu erzählen”. Präfiguration – Konfiguration – Refiguration in muslimischen Reiseberichten. ebv, Berlin (2013)Google Scholar
  3. 3.
    Bellingradt, D., Salman, J.: Books and book history in motion: materiality, sociality and spatiality. In: Bellingradt, D., Nelles, P., Salman, J. (eds.) Books in Motion in Early Modern Europe. NDBH, pp. 1–11. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53366-7_1CrossRefGoogle Scholar
  4. 4.
    Chollet, F., et al.: Keras (2015). https://keras.io
  5. 5.
    Dai, X., Bikdash, M., Meyer, B.: From social media to public health surveillance: word embedding based clustering method for twitter classification. In: SoutheastCon 2017, pp. 1–7. IEEE (2017)Google Scholar
  6. 6.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)zbMATHGoogle Scholar
  7. 7.
    Genz, J., Gévaudan, P.: Medialität, Materialität, Kodierung: Grundzüge einer allgemeinen Theorie der Medien, pp. 201–209. Transcript, Bielefeld (2016)CrossRefGoogle Scholar
  8. 8.
    Greve, A.: Die Konstruktion Amerikas: Bilderpolitik in den “Grands Voyages” aus der Werkstatt de Bry, Europäische Kulturstudien, vol. 14. Böhlau, Köln, Weimar und Wien (2004)Google Scholar
  9. 9.
    Höfert, A.: Den Feind beschreiben. >>Türkengefahr<< und europäisches Wissen über das Osmanische Reich 1450–1600, pp. 120–122. Ferdinand Schöningh, Paderborn (2014)Google Scholar
  10. 10.
    Joachims, T.: Text categorization with Support Vector Machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0026683CrossRefGoogle Scholar
  11. 11.
    von Krusenstjern, B.: Was sind Selbstzeugnisse? Begriffskritische und quellenkundliche Überlegungen anhand von Beispielen aus dem 17. Jahrhundert. Forum Historische Anthropol. 2, 462–471 (1994)CrossRefGoogle Scholar
  12. 12.
    Kürbis, H.: Hispania descripta: Von der Reise zum Bericht. Deutschsprachige Reiseberichte des 16. und 17. Jahrhunderts über Spanien. Ein Beitrag zur Struktur und Funktion der frühneuzeitlichen Reiseliteratur, pp. 345–356. Peter Lang, Frankfurt am Main (2004)Google Scholar
  13. 13.
    Lüdtke, A., et al. (eds.): Selbstzeugnisse der Neuzeit. Böhlau, Weimar (1993)Google Scholar
  14. 14.
    Mai, F., Galke, L., Scherp, A.: Using deep learning for title-based semantic subject indexing to reach competitive performance to full-text. In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, pp. 169–178. ACM (2018)Google Scholar
  15. 15.
    Michel, J.B., et al.: Quantitative analysis of culture using millions of digitized books. Science 331(6014), 176–182 (2011)CrossRefGoogle Scholar
  16. 16.
    Momeni, E., Tao, K., Haslhofer, B., Houben, G.J.: Identification of useful user comments in social media: a case study on flickr commons. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 1–10. ACM (2013)Google Scholar
  17. 17.
    Nünning, A.: Zur mehrfachen Präfiguration/Prämediation der Wirklichkeitsdarstellung im Reisebericht: Grundzüge einer narratologischen Theorie, Typologie und Poetik der Reiseliteratur. In: Gymnich, M., et al. (eds.) Points of Arrival: Travels in Time, Space, and Self/Zielpunkte: Unterwegs in Zeit, Raum und Selbst, pp. 11–32. Francke, Tübingen (2008)Google Scholar
  18. 18.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pfister, M.: Intertextuelles Reisen, oder: Der Reisebericht als Intertext. In: Wetzel, H.H. (ed.) Reisen in den Mittelmeerraum, pp. 55–101. Passavia Universitätsverlag, Passau (1993)Google Scholar
  20. 20.
    Piera, M.: Travel as episteme–an introductory journey. In: Piera, M. (ed.) Remapping Travel Narratives (1000–1700), pp. 1–22. Arc Humanities Press, Leeds (2018)Google Scholar
  21. 21.
    Presser, J.: Memoires als geschiedbron. In: Presser, J. (ed.) Uit het werk van Jacob Presser, pp. 277–282. Athenaeum-Polak & Van Gennep, Amsterdam (1969)Google Scholar
  22. 22.
    Purschwitz, A.: Netzwerke des Wissens – Thematische und personelle Relationen innerhalb der halleschen Zeitungen und Zeitschriften der Aufklärungsepoche (1688–1818). J. Hist. Netw. Res. 2(1), 109–142 (2018)Google Scholar
  23. 23.
    Salzani, C., Tötösy de Zepetnek, S.: Bibliography for work in travel studies. CLCWeb Library p. travelstudiesbibliography (2010). https://docs.lib.purdue.edu/clcweblibrary/travelstudiesbibliography
  24. 24.
    Sandrock, K.: Truth and Lying in early modern travel narratives: coryat’s crudities, lithgow’s total discourse and generic change. Eur. J. English Stud. 19(2), 189–203 (2015)CrossRefGoogle Scholar
  25. 25.
    Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Stagl, J.: Apodemiken. Eine räsonnierte Bibliographie der reisetheoretischen Literatur des 16., 17. und 18. Jahrhunderts, Quellen und Abhandlungen zur Geschichte der Staatsbeschreibung und Statistik (QASS), vol. 2. Ferdinand Schöningh, Paderborn et al. (1983)Google Scholar
  27. 27.
    Stagl, J.: Eine Geschichte der Neugier. Die Kunst des Reisens 1550–1800, pp. 77–122. Böhlau, Köln, Weimar und Wien (2002)CrossRefGoogle Scholar
  28. 28.
    Treue, W.: Abenteuer und Anerkennung. Reisende und Gereiste in Spätmittelalter und Frühneuzeit (1400–1700), p. 8. Ferdinand Schöningh, Paderborn (2014)Google Scholar
  29. 29.
    Van Groesen, M.: The Representations of the Overseas World in the De Bry Collection of Voyages (1590–1634). Brill, Boston and Leiden (2008)CrossRefGoogle Scholar
  30. 30.
    Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 90–94. Association for Computational Linguistics (2012)Google Scholar
  31. 31.
    Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489 (2016)Google Scholar
  32. 32.
    Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)Google Scholar
  33. 33.
    von Zimmermann, C.: Texttypologische Überlegungen zum frühneuzeitlichen Reisebericht: Annäherung an eine Gattung. Archiv für das Studium der neueren Sprachen und Literaturen 154, 1–20 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AIT Austrian Institute of TechnologyViennaAustria
  2. 2.Austrian Academy of SciencesViennaAustria
  3. 3.Austrian National LibraryViennaAustria

Personalised recommendations