Advertisement

MRI in Spine Anatomy

  • Ajit KarambelkarEmail author
Chapter
  • 32 Downloads

Abstract

The spinal column is a complex mechanical structure and protects the spinal cord and nerve roots. It performs multidirectional movements, including flexion, extension, rotation, and lateral bending. MR imaging is well established to evaluate the adult and pediatric spine for many conditions, including degenerative, traumatic, neoplastic, and congenital diseases. Here, we will review some basic anatomy of the spine, focusing on MRI.

Keywords

Normal anatomy Spine Basics MRI Cervical Thoracic Lumbar 

References

  1. 1.
    Hubaud A, Pourquie O. Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol. 2014;15(11):709–21.PubMedGoogle Scholar
  2. 2.
    Scaal M, Christ B. Formation and differentiation of the avian dermomyotome. Anat Embryol. 2004;208(6):411–24.PubMedGoogle Scholar
  3. 3.
    Christ B, Huang R, Scaal M. Formation and differentiation of the avian sclerotome. Anat Embryol. 2004;208(5):333–50.PubMedGoogle Scholar
  4. 4.
    Choi KS, Harfe BD. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs. Proc Natl Acad Sci U S A. 2011;108(23):9484–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Christ B, Huang R, Wilting J. The development of the avian vertebral column. Anat Embryol (Berl). 2000;202(3):179–94.Google Scholar
  6. 6.
    Monsoro-Burq AH, Le Douarin N. Duality of molecular signaling involved in vertebral chondrogenesis. Curr Top Dev Biol. 2000;48:43–75.PubMedGoogle Scholar
  7. 7.
    Pickett EA, Olsen GS, Tallquist MD. Disruption of PDGFRalpha-initiated PI3K activation and migration of somite derivatives leads to spina bifida. Development. 2008;135(3):589–98.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang Y, Serra R. PDGF mediates TGFbeta-induced migration during development of the spinous process. Dev Biol. 2012;365(1):110–7.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Aruga J, et al. Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev. 1999;89(1–2):141–50.PubMedGoogle Scholar
  10. 10.
    Scaal M. Early development of the vertebral column. Semin Cell Dev Biol. 2016;49:83–91.PubMedGoogle Scholar
  11. 11.
    Huang R, et al. Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Cells Tissues Organs. 1996;155(4):231–41.Google Scholar
  12. 12.
    Waxenbaum JA, Futterman B. Anatomy, back, intervertebral discs. Treasure Island (FL): StatPearls Publishing; 2019.Google Scholar
  13. 13.
    Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113(2):235–48.PubMedGoogle Scholar
  14. 14.
    Paik NC, Lim CS, Jang HS. Numeric and morphological verification of lumbosacral segments in 8280 consecutive patients. Spine (Phila Pa 1976). 2013;38(10):E573–8.Google Scholar
  15. 15.
    Bland JH, Boushey DR. Anatomy and physiology of the cervical spine. Semin Arthritis Rheum. 1990;20(1):1–20.PubMedGoogle Scholar
  16. 16.
    Kocabiyik N, Ercikti N, Tunali S. Morphometric analysis of the uncinate processes of the cervical vertebrae. Folia Morphol (Warsz). 2017;76(3):440–5.Google Scholar
  17. 17.
    Kotani Y, et al. The role of anteromedial foraminotomy and the uncovertebral joints in the stability of the cervical spine. A biomechanical study. Spine (Phila Pa 1976). 1998;23(14):1559–65.Google Scholar
  18. 18.
    Ebraheim NA, et al. Quantitative anatomy of the cervical facet and the posterior projection of its inferior facet. J Spinal Disord. 1997;10(4):308–16.PubMedGoogle Scholar
  19. 19.
    Pesch HJ, et al. On the pathogenesis of spondylosis deformans and arthrosis uncovertebralis: comparative form-analytical radiological and statistical studies on lumbar and cervical vertebral bodies. Arch Orthop Trauma Surg. 1984;103(3):201–11.PubMedGoogle Scholar
  20. 20.
    Tubbs RS, et al. Ligaments of the craniocervical junction. J Neurosurg Spine. 2011;14(6):697–709.PubMedGoogle Scholar
  21. 21.
    Moon SM, et al. Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J. 2013;22(8):1820–8.PubMedPubMedCentralGoogle Scholar
  22. 22.
    McCann MR, et al. Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development. Dis Model Mech. 2012;5(1):73–82.PubMedGoogle Scholar
  23. 23.
    Rodrigues-Pinto R, Richardson SM, Hoyland JA. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur Spine J. 2014;23(9):1803–14.PubMedGoogle Scholar
  24. 24.
    Chen S, et al. Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function. Cell Tissue Res. 2017;370(1):53–70.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Mills MK, Shah LM. Imaging of the perivertebral space. Radiol Clin N Am. 2015;53(1):163–80.PubMedGoogle Scholar
  26. 26.
    Hu ZJ, Fang XQ, Fan SW. Iatrogenic injury to the erector spinae during posterior lumbar spine surgery: underlying anatomical considerations, preventable root causes, and surgical tips and tricks. Eur J Orthop Surg Traumatol. 2014;24(2):127–35.PubMedGoogle Scholar
  27. 27.
    Rojas CA, et al. Normal thickness and appearance of the prevertebral soft tissues on multidetector CT. Am J Neuroradiol. 2009;30(1):136–41.PubMedGoogle Scholar
  28. 28.
    Bromage PR. Epidural analgesia. Philadelphia/London: WB Saunders Company; 1978.Google Scholar
  29. 29.
    Nickalls RW, Kokri MS. The width of the posterior epidural space in obstetric patients. Anaesthesia. 1986;41(4):432–3.PubMedGoogle Scholar
  30. 30.
    Paksoy Y, Gormus N. Epidural venous plexus enlargements presenting with radiculopathy and back pain in patients with inferior vena cava obstruction or occlusion. Spine (Phila Pa 1976). 2004;29(21):2419–24.Google Scholar
  31. 31.
    Richardson J, Groen GJ. Applied epidural anatomy. BJA Edu. 2005;5(3):98–100.Google Scholar
  32. 32.
    Cheung JP, et al. Defining clinically relevant values for developmental spinal stenosis: a large-scale magnetic resonance imaging study. Spine (Phila Pa 1976). 2014;39(13):1067–76.Google Scholar
  33. 33.
    Cheung JP, Shigematsu H, Cheung KM. Verification of measurements of lumbar spinal dimensions in T1- and T2-weighted magnetic resonance imaging sequences. Spine J. 2014;14(8):1476–83.PubMedGoogle Scholar
  34. 34.
    Rabischong P. Anatomie fonctionnelle du rachis et de la moelle. In: Manelfe C, editor. Imagerie du rachis et de la moelle. Paris: Vigot; 1989. p. 109–34.Google Scholar
  35. 35.
    Revel M, et al. Variations morphologiques des trous de conjugaison lombaires lors de la flexion-extension et de l’affaissement discal. Rev Rhum Mal Osteoartic. 1988;5:361–6.Google Scholar
  36. 36.
    Panjabi MM, Takata K, Goel VK. Kinematics of lumbar intervertebral foramen. Spine. 1983;8(4):348–57.PubMedGoogle Scholar
  37. 37.
    Inufusa A, et al. Anatomic changes of the spinal canal and intervertebral foramen associated with flexion-extension movement. Spine. 1996;21(21):2412–20.PubMedGoogle Scholar
  38. 38.
    Van Schoor A-N, Bosman MC, Bosenberg AT. Descriptive study of the differences in the level of the conus medullaris in four different age groups. Clin Anat. 2015;28(5):638–44.PubMedGoogle Scholar
  39. 39.
    Demiryurek D, et al. MR imaging determination of the normal level of conus medullaris. Clin Imaging. 2002;26(6):375–7.PubMedGoogle Scholar
  40. 40.
    Nasr AY. Vertebral level and measurements of conus medullaris and dural sac termination with special reference to the apex of the sacral hiatus: anatomical and magnetic resonance imaging radiologic study. Folia Morphol (Warsz). 2016;75(3):287–99.Google Scholar
  41. 41.
    Liu A, et al. Level of conus medullaris termination in adult population analyzed by kinetic magnetic resonance imaging. Surg Radiol Anat. 2017;39(7):759–65.PubMedGoogle Scholar
  42. 42.
    Liccardo G, et al. Fifth ventricle: an unusual cystic lesion of the conus medullaris. Spinal Cord. 2005;43(6):381–4.PubMedGoogle Scholar
  43. 43.
    Cools MJ, et al. Filum terminale lipomas: imaging prevalence, natural history, and conus position. J Neurosurg Pediatr. 2014;13(5):559–67.PubMedGoogle Scholar
  44. 44.
    Fitzgerald MJT, Mtui E, Gruener G. Clinical neuroanatomy, and neuroscience. Edinburgh: Saunders/Elsevier; 2012.Google Scholar
  45. 45.
    Kulkarni B, et al. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci. 2005;21(11):3133–42.PubMedGoogle Scholar
  46. 46.
    De Ridder D, et al. Burst spinal cord stimulation for limb and back pain. World Neurosurg. 2013;80(5):642–649.e1.PubMedGoogle Scholar
  47. 47.
    Demondion X, et al. Radiographic anatomy of the intervertebral cervical and lumbar foramina (vessels and variants). Diagn Interv Imaging. 2012;93(9):690–7.PubMedGoogle Scholar
  48. 48.
    Thron AK. Vascular anatomy of the spinal cord: neuroradiological investigations and clinical syndromes. Wien/New York: Springer Science & Business Media; 1988.Google Scholar
  49. 49.
    Groen GJ, Baljet B, Drukker J. Nerves and nerve plexuses of the human vertebral column. Am J Anat. 1990;188(3):282–96.PubMedGoogle Scholar
  50. 50.
    Hartman J. Anatomy and clinical significance of the uncinate process and uncovertebral joint: a comprehensive review. Clin Anat. 2014;27(3):431–40.PubMedGoogle Scholar
  51. 51.
    Johnson GM. The sensory and sympathetic nerve supply within the cervical spine: review of recent observations. Man Ther. 2004;9(2):71–6.PubMedGoogle Scholar
  52. 52.
    Wozniak W, Grzymislawska M. Innervation of the human cervical and thoracic vertebrae at eight postovulatory weeks. Folia Morphol (Warsz). 2009;68(2):84–7.Google Scholar
  53. 53.
    Chua WH, Bogduk N. The surgical anatomy of thoracic facet denervation. Acta Neurochir. 1995;136(3–4):140–4.PubMedGoogle Scholar
  54. 54.
    Higuchi K, Sato T. Anatomical study of lumbar spine innervation. Folia Morphol (Warsz). 2002;61(2):71–9.Google Scholar
  55. 55.
    Bogduk N. Clinical anatomy of the lumbar spine and sacrum. Edinburgh: Churchill Livingstone; 1997.Google Scholar
  56. 56.
    Ricci C, et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology. 1990;177(1):83–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Thomas Jefferson University Hospital PhiladelphiaPhiladelphiaUSA

Personalised recommendations