Advertisement

Principles of Postoperative Spine MRI

  • Karthik Krishnan
  • Sophie C. Queler
  • Darryl B. SneagEmail author
Chapter
  • 17 Downloads

Abstract

This chapter summarizes the basic principles of postoperative spine MRI. These include technical considerations and imaging protocols, interpretation of the postoperative spine, indications for intravenous contrast, and descriptions of acute and delayed complications. After reading this chapter, the reader should gain a basic understanding of how MRI in conjunction with a patient’s clinical presentation can be used as a troubleshooting tool to identify potential causes of postoperative symptoms.

Keywords

Postoperative Spine MRI Contrast Laminectomy Fusion Complication 

References

  1. 1.
    Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine. 2019;44:369–76.CrossRefGoogle Scholar
  2. 2.
    Weiss AJ, Elixhauser A. Trends in operating room procedures in U.S. Hospitals, 2001—2011. In: Trends in operating room procedures in U.S. Hospitals, 2001–2011 – statistical brief #171. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb171-Operating-Room-Procedure-Trends.jsp. Accessed 15 May 2019.
  3. 3.
    Li G, Patil CG, Lad SP, Ho C, Tian W, Boakye M. Effects of age and comorbidities on complication rates and adverse outcomes after lumbar laminectomy in elderly patients. Spine. 2008;33:1250–5.CrossRefGoogle Scholar
  4. 4.
    Kalanithi PS, Patil CG, Boakye M. National complication rates and disposition after posterior lumbar fusion for acquired Spondylolisthesis. Spine. 2009;34:1963–9.CrossRefGoogle Scholar
  5. 5.
    Malhotra A, Kalra VB, Wu X, Grant R, Bronen RA, Abbed KM. Imaging of lumbar spinal surgery complications. Insights Imaging. 2015;6(6):579–90.  https://doi.org/10.1007/s13244-015-0435-8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Phalke VV, Gujar S, Quint DJ. Comparison of 3.0 T versus 1.5 T MR: imaging of the spine. Neuroimaging Clin N Am. 2006;16:241–8.CrossRefGoogle Scholar
  7. 7.
    Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. Am J Roentgenol. 2011;197:547–55.CrossRefGoogle Scholar
  8. 8.
    Hancock CR, Quencer R, Falcone S. Challenges and pitfalls in postoperative spine imaging. Appl Radiol. 2008;37:23–34.Google Scholar
  9. 9.
    Choi S-J, Koch KM, Hargreaves BA, Stevens KJ, Gold GE. Metal artifact reduction with MAVRIC SL at 3-T MRI in patients with hip arthroplasty. Am J Roentgenol. 2015;204:140–7.CrossRefGoogle Scholar
  10. 10.
    Del Grande F, Santini F, Herzka DA, Aro MR, Dean CW, Gold GE, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics. 2014;34(1):217–33.CrossRefGoogle Scholar
  11. 11.
    Talbot BS, Weinberg EP. MR imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics. 2016;36:209–25.CrossRefGoogle Scholar
  12. 12.
    Hayashi D, Roemer FW, Mian A, Gharaibeh M, Müller B, Guermazi A. Imaging features of postoperative complications after spinal surgery and instrumentation. Am J Roentgenol. 2012;199(1):W123.  https://doi.org/10.2214/ajr.11.6497.CrossRefGoogle Scholar
  13. 13.
    Ross JS, Masaryk TJ, Schrader M, Gentili A, Bohlman H, Modic MT. MR imaging of the postoperative lumbar spine: assessment with gadopentetate dimeglumine. Am J Roentgenol. 1990;155:867–72.CrossRefGoogle Scholar
  14. 14.
    Sen K, Singh A. Magnetic resonance imaging in failed Back surgery syndrome. Med J Armed Forces India. 1999;55:133–8.CrossRefGoogle Scholar
  15. 15.
    Lee Y, Choi E, Song C. Symptomatic nerve root changes on contrast-enhanced MR imaging after surgery for lumbar disk herniation. Am J Neuroradiol. 2009;30:1062–7.CrossRefGoogle Scholar
  16. 16.
    Hyun SJ, Kim YB, Kim YS, Park SW, Nam TK, Hong HJ, Kwon JT. Postoperative changes in Paraspinal muscle volume: comparison between paramedian interfascial and midline approaches for lumbar fusion. J Korean Med Sci. 2007;22:646.CrossRefGoogle Scholar
  17. 17.
    Davies A, Hall A, Strouhal P, Evans N, Grimer R. The MR imaging appearances and natural history of seromas following excision of soft tissue tumours. Eur Radiol. 2004;14:1196.  https://doi.org/10.1007/s00330-004-2255-y.CrossRefPubMedGoogle Scholar
  18. 18.
    Acharya J, Gibbs WN. Imaging spinal infection. Radiol Infect Dis. 2016;3:84–91.CrossRefGoogle Scholar
  19. 19.
    Moritani T, Kim J, Capizzano AA, Kirby P, Kademian J, Sato Y. Pyogenic and non-pyogenic spinal infections: emphasis on diffusion-weighted imaging for the detection of abscesses and pus collections. Br J Radiol. 2014;87:20140011.CrossRefGoogle Scholar
  20. 20.
    Radcliff K, Morrison WB, Kepler C, Moore J, Sidhu GS, Gendelberg D, Miller L, Sonagli MA, Vaccaro AR. Distinguishing pseudomeningocele, epidural hematoma, and postoperative infection on postoperative MRI. Clin Spine Surg. 2016;29:E471.  https://doi.org/10.1097/bsd.0b013e31828f9203.CrossRefPubMedGoogle Scholar
  21. 21.
    Sokolowski MJ, Garvey TA, Perl J, Sokolowski MS, Cho W, Mehbod AA, Dykes DC, Transfeldt EE. Prospective study of postoperative lumbar epidural hematoma. Spine. 2008;33:108–13.CrossRefGoogle Scholar
  22. 22.
    Pierce JL, Donahue JH, Nacey NC, Quirk CR, Perry MT, Faulconer N, Falkowski GA, Maldonado MD, Shaeffer CA, Shen FH. Spinal hematomas: what a radiologist needs to know. Radiographics. 2018;38:1516–35.CrossRefGoogle Scholar
  23. 23.
    Krishnan P, Banerjee TK. Classical imaging findings in spinal subdural hematoma – “Mercedes-Benz” and “cap” signs. Br J Neurosurg. 2015;30:99–100.CrossRefGoogle Scholar
  24. 24.
    Geannette CS, Salomon N. “Pearls and Pitfalls of the Postoperative Lumbar Spine: Anatomy, Lumbar Fusion Techniques, and Postoperative Complications.” American Roentgen Ray Society, 2019.Google Scholar
  25. 25.
    Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB. Complications associated with pedicle screws∗. J Bone Joint Surg. 1999;81:1519–28.CrossRefGoogle Scholar
  26. 26.
    Chun DS, Baker KC, Hsu WK. Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus. 2015;39:E10.  https://doi.org/10.3171/2015.7.focus15292.CrossRefPubMedGoogle Scholar
  27. 27.
    Kornblum MB, Fischgrund JS, Herkowitz HN, Abraham DA, Berkower DL, Ditkoff JS. Degenerative lumbar spondylolisthesis with spinal stenosis. Spine. 2004;29:726–33.CrossRefGoogle Scholar
  28. 28.
    Rahme R, Moussa R. The modic vertebral endplate and marrow changes: pathologic significance and relation to low back pain and segmental instability of the lumbar spine. Am J Neuroradiol. 2008;29:838–42.CrossRefGoogle Scholar
  29. 29.
    Lang P, Chafetz N, Genant HK, Morris JM. Lumbar spinal fusion assessment of functional stability with magnetic resonance imaging. Spine. 1990;15:581–8.CrossRefGoogle Scholar
  30. 30.
    Domenicucci M, Ramieri A, Passacantilli E, Russo N, Trasimeni G, Delfini R. Spinal arachnoiditis ossificans: report of three cases. Neurosurgery. 2004;55:E1011.  https://doi.org/10.1227/01.neu.0000137281.65551.54.CrossRefGoogle Scholar
  31. 31.
    Dimar JR, Glassman SD, Burkus JK, Pryor PW, Hardacker JW, Carreon LY. Clinical and radiographic analysis of an optimized rhBMP-2 formulation as an autograft replacement in Posterolateral lumbar spine arthrodesis. J Bone Joint Surg Am. 2009;91:1377–86.CrossRefGoogle Scholar
  32. 32.
    Mckie J, Qureshi S, Iatridis J, Egorova N, Cho S, Hecht A. Trends in bone morphogenetic protein usage since the U.S. Food and Drug Administration advisory in 2008: what happens to physician practices when the food and drug administration issues an advisory? Global Spine J. 2013;4:071–6.CrossRefGoogle Scholar
  33. 33.
    Lebl DR. Bone morphogenetic protein in complex cervical spine surgery: a safe biologic adjunct? World J Orthop. 2013;4:53.CrossRefGoogle Scholar
  34. 34.
    Sethi A, Craig J, Bartol S, Chen W, Jacobson M, Coe C, Vaidya R. Radiographic and CT evaluation of recombinant human bone morphogenetic protein-2–assisted spinal interbody fusion. Am J Roentgenol. 2011;197:W128.  https://doi.org/10.2214/ajr.10.5484.CrossRefGoogle Scholar
  35. 35.
    Shah RK, Moncayo VM, Smitson RD, Pierre-Jerome C, Terk MR. Recombinant human bone morphogenetic protein 2-induced heterotopic ossification of the retroperitoneum, psoas muscle, pelvis and abdominal wall following lumbar spinal fusion. Skelet Radiol. 2010;39:501–4.CrossRefGoogle Scholar
  36. 36.
    Nguyen N-LM, Kong CY, Hart RA. Proximal junctional kyphosis and failure—diagnosis, prevention, and treatment. Curr Rev Musculoskelet Med. 2016;9:299–308.CrossRefGoogle Scholar
  37. 37.
    Argentieri EC, Koff MF, Breighner RE, Endo Y, Shah PH, Sneag DB. Diagnostic accuracy of zero-echo time MRI for the evaluation of cervical neural foraminal stenosis. Spine. 2018;43:928–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Karthik Krishnan
    • 1
    • 2
  • Sophie C. Queler
    • 2
  • Darryl B. Sneag
    • 1
    • 2
    Email author
  1. 1.Weill Medical College of Cornell UniversityNew YorkUSA
  2. 2.Department of Radiology and ImagingHospital for Special SurgeryNew YorkUSA

Personalised recommendations