Advertisement

Data Fusion for Industry 4.0: General Concepts and Applications

  • Ricardo Eiji KondoEmail author
  • Erick Douglas de Lima
  • Eduardo de Freitas Rocha Loures
  • Eduardo Alves Portela dos Santos
  • Fernando Deschamps
Conference paper
  • 16 Downloads
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

The 4th Industrial Revolution represents a new industrial era through the combination of Cyber-Physical Systems, Internet of Things, and the Internet of Services. Data are the new raw material of the 21st century, and it is necessary to turn these data into meaningful information to provide a more flexible, reliable, and efficient operation. To overcome challenges related to acquisition and analysis of a large amount of data, the data fusion strategy has gained focus as a data preprocessing phase to support the fast-growing data-intensive applications. This article presents a systematic mapping of general concepts and applications of data fusion in the context of Industry 4.0 assisting the research community in future studies as well as practitioners and students, providing support for the use of data fusion strategy.

Keywords

Industry 4.0 Data fusion Multi-sensor data fusion 

References

  1. 1.
    Thames, L., Schaefer, D.: Software-defined cloud manufacturing for Industry 4.0. Procedia CIRP 52(1), 12–17 (2016)Google Scholar
  2. 2.
    Reiner, A.: Industrie 4.0 - advanced engineering of smart products and smart production. In: Proceedings of the 19th International Seminar on High Technology, pp. 1–14. Press (2014)Google Scholar
  3. 3.
    Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of industry 4.0: key technologies, application case, and challenges. IEEE Access 6(1), 6505–6519 (2017)Google Scholar
  4. 4.
    Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3(1), 18–23 (2015)Google Scholar
  5. 5.
    Roblek, V., Meško, M., Krapež, A.: A complex view of Industry 4.0. SAGE Open 6(2), 1–11 (2016)Google Scholar
  6. 6.
    Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: Proceedings of the International Conference on Wireless Communication Signal Processing, WCSP 2011, pp. 1–6. IEEE Press (2011)Google Scholar
  7. 7.
    López, G., Garach, L., Abellán, J., Castellano, J.G., Mantas, C.J.: Using imprecise probabilities to extract decision rules via decision trees for analysis of traffic accidents. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) Rough Sets and Current Trends in Computing: RSCTC 2014. LNCS, vol. 8536, pp. 288–298. Springer, Cham (2014)Google Scholar
  8. 8.
    Marvuglia, A., Messineo, A.: Monitoring of wind farms’ power curves using machine learning techniques. Appl. Energy 98(1), 574–583 (2012)CrossRefGoogle Scholar
  9. 9.
    Ruschel, E., Santos, E.A.P., Loures, E.R.: Industrial maintenance decision-making: a systematic literature review. J. Manuf. Syst. 45(1), 180–194 (2017)CrossRefGoogle Scholar
  10. 10.
    Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning an Artificial Intelligence Approach. Springer, Heidelberg (2013)Google Scholar
  11. 11.
    Dong, X.L., Gabrilovich, E., Heitz, G., Horn, W., Murphy, K., Sun, S., Zhang, W.: From data fusion to knowledge fusion. Proc. VLDB Endow. 7(10), 881–892 (2015)CrossRefGoogle Scholar
  12. 12.
    Castanedo, F.: A review of data fusion techniques. Sci. World J. 2013(1), 704504-1–704504-19 (2013)Google Scholar
  13. 13.
    Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inform. Fusion 50(1), 92–111 (2019)Google Scholar
  14. 14.
    Ensslin, L., Ensslin, S.R., Lacerda, R.T.O., Tasca, J.E.: ProKnow-C, Knowledge Development Process – Constructivist. INPI, Rio de Janeiro (2010)Google Scholar
  15. 15.
    Wang, Y., Zheng, L., Hu, Y., Fan, W.: Multi-source heterogeneous data collection and fusion for manufacturing workshop based on complex event processing. In: Proceedings of 48th International Conference on Computers and Industrial Engineering, CIE 2018, pp. 1–12. Curran Associates, Inc. (2019)Google Scholar
  16. 16.
    Cao, H., Zhang, X., Chen, X.: The concept and progress of intelligent spindles: a review. Int. J. Mach. Tool. Manuf. 112(1), 21–52 (2017)CrossRefGoogle Scholar
  17. 17.
    Liao, Y., Deschamps, F., Loures, E.R., Ramos, L.F.P.: Past, present and future of industry 4.0 - a systematic literature review and research agenda proposal. Int. J. Prod. Res. 55(1), 3609–3629 (2017)Google Scholar
  18. 18.
    Ding, W., Jing, X., Yan, Z., Yang, L.T.: A survey on data fusion in internet of things: towards secure and privacy-preserving fusion. Inform. Fusion 51(1), 129–144 (2019)CrossRefGoogle Scholar
  19. 19.
    Wang, P., Yang, L.T., Li, J., Chen, J., Hu, S.: Data fusion in cyber-physical-social systems: state-of-the-art and perspectives. Inform. Fusion 51(1), 42–57 (2019)CrossRefGoogle Scholar
  20. 20.
    Calhoun, V.D., Adali, T.: Feature-based fusion of medical imaging data. IEEE Trans. Inf Technol. Biomed. 13(5), 711–720 (2009)CrossRefGoogle Scholar
  21. 21.
    Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inform. Fusion 14(1), 28–44 (2013)CrossRefGoogle Scholar
  22. 22.
    Klein, L.A.: Sensor and Data Fusion Concepts and Applications. SPIE, Washington (1999)Google Scholar
  23. 23.
    Lahat, D., Adali, T., Jutten, C.: Multimodal data fusion: an overview of methods, challenges, and prospects. P. IEEE 103(9), 1449–1477 (2015)CrossRefGoogle Scholar
  24. 24.
    van Mechelen, I., Smilde, A.K.: A generic linked-mode decomposition model for data fusion. Chemometr. Intell. Lab. 104(1), 83–94 (2010)CrossRefGoogle Scholar
  25. 25.
    Razavi, S.N., Haas, C.T.: Reliability-based hybrid data fusion method for adaptive location estimation in construction. J. Comput. Civil Eng. 26(1), 1–10 (2011)CrossRefGoogle Scholar
  26. 26.
    Kokar, M., Weyman, J., Tomasik, J.: Formalizing classes of information fusion systems. Inform. Fusion 5(3), 189–202 (2004)CrossRefGoogle Scholar
  27. 27.
    Boström, H., Andler, S.F., Brohede, M., Johansson, R., Karlsson, A., Laere, J. van, Niklasson, L., Nilsson, M., Persson, A., Ziemke, T.: On the definition of information fusion as a field of research. Technical report, pp. 1–8. Institutionen för kommunikation och information, Skovde (2007)Google Scholar
  28. 28.
    Alturki, B., Reiff-Marganiec, S., Charith P.: A hybrid approach for data analytics for internet of things. In: Proceedings of the 7th International Conference on the Internet of Things, IoT 2017, pp. 8-1–8-11. Association for Computing Machinery, New York (2017)Google Scholar
  29. 29.
    Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. P. IEEE 85(1), 6–23 (1997)CrossRefGoogle Scholar
  30. 30.
    Cohen, N.H., Purakayastha, A., Turek, J., Wong, L., Yeh, D.: Challenges in flexible aggregation of pervasive data. Research report, pp. 1–12. IMB Research Division (2001)Google Scholar
  31. 31.
    Mitchell, H.B.: Multi-Sensor Data Fusion: An Introduction. Springer, Berlin (2007)Google Scholar
  32. 32.
    Duro, J.A., Padget, J.A., Bowen, C.R., Kim, H.A., Nassehi, A.: Multi-sensor data fusion framework for CNC machining monitoring. MECH. Syst. Signal Pr. 66–67(1), 505–520 (2016)CrossRefGoogle Scholar
  33. 33.
    Luo, R.C., Kay, M.G.: A tutorial on multisensor integration and fusion. In: Proceedings of the 16th Annual Conference of IEEE Industrial Electronics Society, IECON 1990, pp. 707–722. IEEE Press (1990)Google Scholar
  34. 34.
    Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor networks. ACM Comput. Surv. 39(3), 9-1–9-55 (2007)Google Scholar
  35. 35.
    Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE T. Ind. Inform. 15(4), 2405–2415 (2019)CrossRefGoogle Scholar
  36. 36.
    Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Sig. Pr. 20(7), 1483–1510 (2006)CrossRefGoogle Scholar
  37. 37.
    Elghazel, W., Bahi, J.M., Guyeux, C., Hakem, M., Medjaher, K., Zerhouni, N.: Dependability of sensor networks for industrial prognostics and health management. Comput. Ind. 68(1), 1–15 (2015)CrossRefGoogle Scholar
  38. 38.
    Mönks, U., Trsek, H., Dürkop, L., Geneiß, V., Lohweg, V.: Towards distributed intelligent sensor and information fusion. Mechatronics 34(1), 63–71 (2016)CrossRefGoogle Scholar
  39. 39.
    Esteban, J., Starr, A., Willetts, R., Hannah, P., Bryanston-Cross, P.: A review of data fusion models and architectures: towards engineering guidelines. Neural Comput. Appl. 14(4), 273–281 (2005)CrossRefGoogle Scholar
  40. 40.
    Akhoundi, M.A.A., Valavi, E.: Multi-sensor fuzzy data fusion using sensors with different characteristics. CSI J. Comput. Sci. Eng. 16(2), 44–53 (2010)Google Scholar
  41. 41.
    Pires, I.M., Garcia, N.M., Pombo, N., Flórez-Revuelta, F.: From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices. Sensors 16(2), 184-1–184-27 (2016)Google Scholar
  42. 42.
    Ben Ayed, S., Trichili, H., Alimi, A.M.: Data fusion architectures: a survey and comparison. In: Proceedings of the 15th International Conference on Intelligent Systems Design and Applications, ISDA 2015, pp. 277–282. IEEE Press (2016)Google Scholar
  43. 43.
    Durrant-Whyte, H.F.: Sensor models and multisensor integration. Int. J. Robot. Res. 7(6), 97–113 (1988)CrossRefGoogle Scholar
  44. 44.
    Dasarathy, B.V.: Sensor fusion potential exploitation-innovative architectures and illustrative applications. P. IEEE 85(1), 24–38 (1997)CrossRefGoogle Scholar
  45. 45.
    Luo, R., Kay, M.: Multisensor integration and fusion: issues and approaches. Proc. SPIE 931(1), 42–49 (1988)CrossRefGoogle Scholar
  46. 46.
    Steinberg, A.N., Bowman, C.L., White, F.E.: Revisions to the JDL data fusion model. Proc. SPIE 3719(1), 430–441 (1999)CrossRefGoogle Scholar
  47. 47.
    Foo, P.H., Ng, G.W.: High-level information fusion: an overview. J. Adv. Inf. Fusion 8(1), 5–28 (2013)Google Scholar
  48. 48.
    Blasch, E., Cruise, R.: Information fusion management: collection to diffusion. In: Proceedings of the IEEE National Aerospace and Electronics Conference, NAECON 2016, pp. 27–35. IEEE Press (2017)Google Scholar
  49. 49.
    Blasch, E., Plano, S.: DFIG level 5 (user refinement) issues supporting situational assessment reasoning. In: Proceedings of the 7th International Conference on Information Fusion, FUSION 2005, pp. 9–16. IEEE Press (2006)Google Scholar
  50. 50.
    Thomopoulos, S.C.: Sensor integration and data fusion. Proc. SPIE 1198(1), 178–191 (1989)Google Scholar
  51. 51.
    Pau, L.F.: Sensor data fusion. J. Intell. Robot. Syst. 1(1), 103–116 (1988)CrossRefGoogle Scholar
  52. 52.
    Harris, C.J., Bailey, A., Dodd, T.J.: Multi-sensor data fusion in defence and aerospace. Aeronaut. J. 102(1050), 229–244 (1998)Google Scholar
  53. 53.
    Boyd, J.R.: A discourse on winning and losing. In: Unpublished set of briefing slides available at Air University Library. Maxwell AFB, Alabama (1987)Google Scholar
  54. 54.
    Gad, A., Farooq, M.: Data fusion architecture for maritime surveillance. In: Proceedings of the 5th International Conference on Information Fusion, FUSION 2002, pp. 448–455. IEEE Press (2002)Google Scholar
  55. 55.
    Shulsky, A.N., Schmmit, G.J.: Silent Warfare: Understanding the World of Intelligence. Brasseys Inc., New York (2002)Google Scholar
  56. 56.
    Bedworth, M.D., O’Brien, J.C.: The omnibus model: a new model for data fusion? IEEE Aero. El. Syst. Mag. 15(4), 30–36 (1999)CrossRefGoogle Scholar
  57. 57.
    Karakowsky, J.A.: Towards visual data fusion. In: Proceedings of the Military Sensing Series National Symposium on Sensor and Data Fusion International Open Session (1998)Google Scholar
  58. 58.
    Kokar, M.M., Bedworth, M.D., Frankel, C.B.: A reference model for data fusion systems. Proc. SPIE 4051(1), 191–202 (2000)CrossRefGoogle Scholar
  59. 59.
    Frankel, C.B., Bedworth, M.D.: Control, estimation and abstraction in fusion architectures: lessons from human information processing. In: Proceedings of the 3rd International Conference on Information Fusion, FUSION 2000, pp. MOC5-3–MOC5-10. IEEE Press (2002)Google Scholar
  60. 60.
    Endsley, M.: Theoretical underpinnings of situation awareness: a critical review. In: Endsley, M.R., Garland, D.J (eds.) Situation Awareness Analysis and Measurement, pp. 1–24. Lawrence Erlbaum Associates, Mahwah (2000)Google Scholar
  61. 61.
    Bossé, É., Roy, J., Wark, S.: Concepts, Models, and Tools for Information Fusion. Artech House (2007)Google Scholar
  62. 62.
    Lambert, D.A.: Grand challenges of information fusion. In: Proceedings of the 6th International Conference on Information Fusion, FUSION 2003, pp. 213–220. IEEE Press (2005)Google Scholar
  63. 63.
    Blasch, E.: Level 5 (user refinement) issues supporting information fusion management. In: Proceedings of the 9th International Conference on Information Fusion, FUSION 2006, pp. 1–8. IEEE Press (2007)Google Scholar
  64. 64.
    Blasch, E., Plano, S.: Ontological issues in higher levels of information fusion: user refinement of the fusion process. In: Proceedings of the 6th International Conference on Information Fusion, FUSION 2003, pp. 634–641. IEEE Press (2005)Google Scholar
  65. 65.
    Shahbazian, E., Blodgett, D.E., Labbé, P.: The extended OODA model for data fusion systems. In: Proceedings of the International Conference on Information Fusion, FUSION 2001, pp. 1–7. Press (2001)Google Scholar
  66. 66.
    Brehmer, B.: The dynamic OODA loop: Amalgamating Boyd’s OODA loop and the cybernetic approach to command and control. In: Proceedings of the 10th International Command and Control Research and Technology Symposium, pp. 1–14. Press (2005)Google Scholar
  67. 67.
    Elmenreich, W.: A review on system architectures for sensor fusion applications. In: Obermaisser, R., Nah, Y., Puschner, P., Rammig, F.J. (eds.) Software Technologies for Embedded and Ubiquitous Systems: SEUS 2007. LNCS, vol. 4761, pp. 547–559. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  68. 68.
    Steinberg, A.N., Bowman, C.L.: Revisions to the JDL data fusion model. In: Liggins, M.E., Hall, D.L., Llinas, J. (eds.) Handbook of Multisensor Data Fusion: Theory and Practice. CRC Press, Boca Raton (2009)Google Scholar
  69. 69.
    Hall, D.L., McMullen, A.H.: Mathematical Techniques in Multisensor Data Fusion. Artech House (2004)Google Scholar
  70. 70.
    Azimirad, E., Haddadnia, J., Izadipour, A.: A comprehensive review of the multi-sensor data fusion architectures. J. Theor. Appl. Inf. Technol. 71(1), 33–42 (2015)Google Scholar
  71. 71.
    Li, H., Zhang, L., Xiao, T., Dong, J.: Data fusion and simulation-based planning and control in cyber physical system for digital assembly of aeroplane. Int. J. Model. Simul. Sci. Comput. 6(3), 1550027-1 (2015)Google Scholar
  72. 72.
    Fan, X., Zuo, M.J.: Fault diagnosis of machines based on D-S evidence theory. Part 1: D-S evidence theory and its improvement. Pattern Recogn. Lett. 27(5), 366–376 (2006)Google Scholar
  73. 73.
    Bashi, A., Jilkov, V.P., Li, X.R.: Fault detection for systems with multiple unknown modes and similar units – part I. In: Proceedings of the 12th International Conference on Information Fusion, FUSION 2009, pp. 732–739. IEEE Press (2009)Google Scholar
  74. 74.
    Qiu, R.G.: A data fusion framework for an integrated plant-wide information system. In: Proceedings of the 5th International Conference on Information Fusion, FUSION 2002, pp. 101–107. IEEE Press (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ricardo Eiji Kondo
    • 1
    Email author
  • Erick Douglas de Lima
    • 1
  • Eduardo de Freitas Rocha Loures
    • 1
  • Eduardo Alves Portela dos Santos
    • 1
  • Fernando Deschamps
    • 1
  1. 1.Graduate Program in Production and Systems Engineering (PPGEPS)Pontifical Catholic University of Paraná (PUCPR)CuritibaBrazil

Personalised recommendations