Advertisement

Trust in IoT Devices: A Logic Encryption Perspective

  • Yasaswy KasarabadaEmail author
  • David Luria
  • Ranga Vemuri
Conference paper
  • 16 Downloads
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 574)

Abstract

Tremendous technological advancement has led to the development of an ecosystem of highly connected ubiquitous computing devices called the Internet of Things (IoT). Considering the sensitive nature of the data collected by the IoT devices, it is essential to ensure the security of these devices. Logic encryption is a popular design-for-trust technique used for protection against hardware IP piracy, design counterfeiting, and hardware Trojan insertion. The introduction of various attack methods that leverage vulnerabilities in known logic encryption techniques has prompted the development of new techniques able to thwart the proposed attacks. Major research effort in the field of logic encryption focuses on increasing resilience to known and potential attacks while often ignoring considerations of cost overhead, especially die area and power consumed. Since area and power optimization are key aspects in the design and development of most IoT devices, it is important to evaluate the cost incurred by logic encryption schemes, especially in the context of these two metrics. In this paper, we survey some of the most popular logic encryption and decryption techniques proposed in the past decade. An analysis of the area and power overhead of these logic encryption techniques using several standard benchmark circuits is presented to assess their suitability for resource constrained systems.

Keywords

Logic encryption Internet of Things Trust Security 

References

  1. 1.
    Alasad, Q., Bi, Y., Yuan, J.S.: E2LEMI: energy-efficient logic encryption using multiplexer insertion. Electronics 6(1), 16 (2017)CrossRefGoogle Scholar
  2. 2.
    Amir, S., et al.: Development and evaluation of hardware obfuscation benchmarks. J. Hardw. Syst. Secur. 2(2), 142–161 (2018)CrossRefGoogle Scholar
  3. 3.
    Chakraborty, R.S., Bhunia, S.: HARPOON: an obfuscation-based SoC design methodology for hardware protection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(10), 1493–1502 (2009)CrossRefGoogle Scholar
  4. 4.
    El Massad, M., Garg, S., Tripunitara, M.: Reverse engineering camouflaged sequential circuits without scan access. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 33–40. IEEE (2017)Google Scholar
  5. 5.
    Karmakar, R., Chatopadhyay, S., Kapur, R.: Encrypt flip-flop: a novel logic encryption technique for sequential circuits. arXiv preprint arXiv:1801.04961 (2018)
  6. 6.
    Karmakar, R., Kumar, H., Chattopadhyay, S.: On finding suitable key-gate locations in logic encryption. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018)Google Scholar
  7. 7.
    Kasarabada, Y., Chen, S., Vemuri, R.: On SAT-based attacks on encrypted sequential logic circuits. In: 20th International Symposium on Quality Electronic Design (ISQED), pp. 204–211. IEEE (2019)Google Scholar
  8. 8.
    Kasarabada, Y., Thulasi Raman, S.R., Vemuri, R.: Deep state encryption for sequential logic circuits. In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 338–343, July 2019Google Scholar
  9. 9.
    Lee, Y.W., Touba, N.A.: Improving logic obfuscation via logic cone analysis. In: 2015 16th Latin-American Test Symposium (LATS), pp. 1–6. IEEE (2015)Google Scholar
  10. 10.
    Li, M., et al.: Provably secure camouflaging strategy for IC protection. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (2017)Google Scholar
  11. 11.
    Narasimhan, S., Chakraborty, R.S., Chakraborty, S.: Hardware IP protection during evaluation using embedded sequential trojan. IEEE Des. Test Comput. 29(3), 70–79 (2012)CrossRefGoogle Scholar
  12. 12.
    Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfuscation. In: Proceedings of the 49th Annual Design Automation Conference, pp. 83–89. ACM (2012)Google Scholar
  13. 13.
    Roshanisefat, S., Mardani Kamali, H., Sasan, A.: SRClock: SAT-resistant cyclic logic locking for protecting the hardware. In: Proceedings of the 2018 on Great Lakes Symposium on VLSI, pp. 153–158. ACM (2018)Google Scholar
  14. 14.
    Roy, J.A., Koushanfar, F., Markov, I.L.: Ending piracy of integrated circuits. Computer 43(10), 30–38 (2010)CrossRefGoogle Scholar
  15. 15.
    Samimi, M.S., Aerabi, E., Kazemi, Z., Fazeli, M., Patooghy, A.: Hardware enlightening: no where to hide your hardware trojans! In: 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 251–256. IEEE (2016)Google Scholar
  16. 16.
    Shamsi, K., Li, M., Meade, T., Zhao, Z., Pan, D.Z., Jin, Y.: AppSAT: approximately deobfuscating integrated circuits. In: 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 95–100. IEEE (2017)Google Scholar
  17. 17.
    Shamsi, K., Li, M., Meade, T., Zhao, Z., Pan, D.Z., Jin, Y.: Cyclic obfuscation for creating SAT-unresolvable circuits. In: Proceedings of the on Great Lakes Symposium on VLSI 2017, pp. 173–178. ACM (2017)Google Scholar
  18. 18.
    Shamsi, K., Li, M., Pan, D.Z., Jin, Y.: KC2: key-condition crunching for fast sequential circuit deobfuscation. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 534–539. IEEE (2019)Google Scholar
  19. 19.
    Sirone, D., Subramanyan, P.: Functional analysis attacks on logic locking. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 936–939. IEEE (2019)Google Scholar
  20. 20.
    Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption algorithms. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 137–143. IEEE (2015)Google Scholar
  21. 21.
    Synopsys: Design compiler (2018). https://www.synopsys.com/
  22. 22.
    Synopsys: Tetramax (2018). https://www.synopsys.com/
  23. 23.
    Xiao, K., Forte, D., Jin, Y., Karri, R., Bhunia, S., Tehranipoor, M.: Hardware trojans: lessons learned after one decade of research. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22(1), 6 (2016)Google Scholar
  24. 24.
    Xie, Y., Srivastava, A.: Mitigating SAT attack on logic locking. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 127–146. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53140-2_7CrossRefGoogle Scholar
  25. 25.
    Xie, Y., Srivastava, A.: Delay locking: security enhancement of logic locking against IC counterfeiting and overproduction. In: Proceedings of the 54th Annual Design Automation Conference 2017, p. 9. ACM (2017)Google Scholar
  26. 26.
    Xie, Y., Srivastava, A.: Anti-SAT: mitigating SAT attack on logic locking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(2), 199–207 (2018)CrossRefGoogle Scholar
  27. 27.
    Xu, X., Shakya, B., Tehranipoor, M.M., Forte, D.: Novel bypass attack and BDD-based tradeoff analysis against all known logic locking attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 189–210. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66787-4_10CrossRefGoogle Scholar
  28. 28.
    Yang, F., Tang, M., Sinanoglu, O.: Stripped functionality logic locking with hamming distance based restore unit (SFLL-hd)-unlocked. IEEE Trans. Inf. Forensics Secur. 14, 2778–2786 (2019)CrossRefGoogle Scholar
  29. 29.
    Yasin, M., Mazumdar, B., Rajendran, J.J., Sinanoglu, O.: SARLock: SAT attack resistant logic locking. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 236–241. IEEE (2016)Google Scholar
  30. 30.
    Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: CamoPerturb: secure IC camouflaging for minterm protection. In: 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8. IEEE (2016)Google Scholar
  31. 31.
    Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Removal attacks on logic locking and camouflaging techniques. IEEE Trans. Emerg. Top. Comput. 1 (2017)Google Scholar
  32. 32.
    Yasin, M., Rajendran, J.J., Sinanoglu, O., Karri, R.: On improving the security of logic locking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(9), 1411–1424 (2015)CrossRefGoogle Scholar
  33. 33.
    Yasin, M., Sengupta, A., Nabeel, M.T., Ashraf, M., Rajendran, J.J., Sinanoglu, O.: Provably-secure logic locking: from theory to practice. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1601–1618. ACM (2017)Google Scholar
  34. 34.
    Yasin, M., Sengupta, A., Schafer, B.C., Makris, Y., Sinanoglu, O., Rajendran, J.J.: What to lock?: functional and parametric locking. In: Proceedings of the on Great Lakes Symposium on VLSI 2017, pp. 351–356. ACM (2017)Google Scholar
  35. 35.
    Zhou, H., Jiang, R., Kong, S.: CycSAT: SAT-based attack on cyclic logic encryptions. In: Proceedings of the 36th International Conference on Computer-Aided Design, pp. 49–56. IEEE Press (2017)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2020

Authors and Affiliations

  1. 1.Digital Design Environments LaboratoryUniversity of CincinnatiCincinnatiUSA

Personalised recommendations