Advertisement

Cheating Detection in (k, n) Secret Image Sharing Scheme

  • Jianfeng Ma
  • Liping Yin
  • Peng LiEmail author
Conference paper
  • 72 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12022)

Abstract

Secret image sharing will inevitably be threatened by various types of attacks in practical applications, of which cheating behavior is the most prone. In this paper, in order to prevent deceivers from threatening the security of secret image transmission process, a polynomial based cheating detection scheme is proposed. The (k, n) secret image sharing scheme must ensure that any k or more participants can restore the secret image, and less than k participants cannot get any information of the secret image. In our scheme, only one honest shareholder can detect the collusion from other k − 1 deceivers. Furthermore, our scheme reduces the size of shadow images thus saving storage space and transmission time. Theory and experiments show that our scheme is effective and feasible in cheating detection.

Keywords

Secret image sharing Cheating detection Shadow image Secret sharing 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61602173), Natural Science Foundation of Hebei Province of China (No. F2019502173) and the Fundamental Research Funds for Central Universities (No. 2019MS116).

References

  1. 1.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS, pp. 313–317 (1979)Google Scholar
  3. 3.
    Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptol. 1(3), 133–138 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liu, Y.: Linear (k, n) secret sharing scheme with cheating detection. Secur. Commun. Netw. 9(13), 2115–2121 (2016)Google Scholar
  5. 5.
    Liu, Y.-X., Sun, Q.-D., Yang, C.-N.: (k,n) secret image sharing scheme capable of cheating detection. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–6 (2018).  https://doi.org/10.1186/s13638-018-1084-7CrossRefGoogle Scholar
  6. 6.
    Pieprzyk, J., Zhang, X.-M.: Cheating prevention in linear secret sharing. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 121–135. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45450-0_9CrossRefGoogle Scholar
  7. 7.
    Liu, Y., Yang, C., Wang, Y., et al.: Cheating identifiable secret sharing scheme using symmetric bivariate polynomial. Inf. Sci. 453, 21–29 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carpentieri, M.: A perfect threshold secret sharing scheme to identify cheaters. Des. Codes Crypt. 5(3), 183–187 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pasailă, D., Alexa, V., Iftene, S.: Cheating detection and cheater identification in CRT-based secret sharing schemes. Int. Sci. J. Comput. 9(2), 107–117 (2010)Google Scholar
  10. 10.
    Thien, C., Lin, J.: Secret image sharing. Comput. Graph. 26(5), 765–770 (2002)CrossRefGoogle Scholar
  11. 11.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceeding of the Symposium on theory of Computing, pp. 73–85 (1989)Google Scholar
  12. 12.
    Zhao, R., Zhao, J., Dai, F., et al.: A new image secret sharing scheme to identify cheaters. Comput. Stand. Interfaces 31(1), 252–257 (2009)CrossRefGoogle Scholar
  13. 13.
    Lin, Y., Wang, R.: Scalable secret image sharing with smaller shadow images. IEEE Signal Process. Lett. 17(3), 316–319 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wu, K.-S.: A secret image sharing scheme for light images. EURASIP J. Adv. Signal Process. 2013(1), 1–5 (2013).  https://doi.org/10.1186/1687-6180-2013-49CrossRefGoogle Scholar
  15. 15.
    Chen, C., Fu, W.: A geometry-based secret image sharing approach. J. Inf. Sci. Eng. 24(5), 1567–1577 (2008)MathSciNetGoogle Scholar
  16. 16.
    Nag, A., Biswas, S., Sarkar, D., et al.: A new (k, n) verifiable secret image sharing scheme (VSISS). Egypt. Inform. J. 15(3), 201–209 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBaodingChina

Personalised recommendations