Advertisement

Multi-attack Reference Hashing Generation for Image Authentication

  • Ling DuEmail author
  • Yijing Wang
  • Anthony T. S. Ho
Conference paper
  • 58 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12022)

Abstract

Perceptual hashing for image authentication has been intensively investigated owing to the speed and memory efficiency. How to determine the reference hashing code, which is used for similarity measures between the distorted hashes and reference hashes, is important but less considered for image hashing design. In this paper, we present a Multi-Attack Reference Hashing (MRH) method based on hashing cluster for image authentication, which is expected to use prior information, i.e. the supervised content-preserving images and multiple attacks for feature generation and final reference hashing code generation. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.

Keywords

Reference hashing Multi-attack Image authentication 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61602344, 61602341, 61902280), Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China (Grant No. 2017KJ091) and Natural Science Foundation of Tianjin (Grant No. 17JCQNJC00600, 19JCYBJC15600).

References

  1. 1.
    Kobayashi, H., Kiya, H.: Robust image authentication using hash function. In: IEEE Region 10 Annual International Conference, pp. 435–438 (2004)Google Scholar
  2. 2.
    Schneider, M., Chang, S.F.: A robust content based digital signature for image authentication. In: IEEE International Conference on Image Processing, pp. 227–230 (1996)Google Scholar
  3. 3.
    Fridrich, J., Goljan, M.: Robust hash function for digital watermarking. In: Proceedings of International Conference on Information Technology: Coding and Computing, pp. 173–178 (2000)Google Scholar
  4. 4.
    Kalker, T., Haitsma, J., Oostveen, J.C.: Issues with digital watermarking and perceptual hashing. In: Proceedings of SPIE, vol. 4518, pp. 189–197 (2001)Google Scholar
  5. 5.
    Hadmi, A., Ouahman, A.A., Said, B.A.E., Puech, W.: Perceptual image hashing. INTECH Open Access Publisher (2012)Google Scholar
  6. 6.
    Zhu, G., Huang, J., Kwong, S.: Fragility analysis of adaptive quantization-based image hashing. IEEE Trans. Inf. Forensics Secur. 5(1), 133–147 (2010) CrossRefGoogle Scholar
  7. 7.
    Khelifi, F., Jiang, J.: Perceptual image hashing based on virtual watermark detection. IEEE Trans. Image Process. 19, 981–994 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Schneider, M., Chang, S.F.: A robust content based digital signature for image authentication. In: Proceedings of the IEEE International Conference on Image Processing, pp. 227–230 (1996)Google Scholar
  9. 9.
    Tang, Z., Zhang, X., Li, X.: Robust image hashing with ring partition and invariant vector distance. IEEE Trans. Inf. Forensics Secur. 11(1), 200–214 (2015)CrossRefGoogle Scholar
  10. 10.
    Huang, Z., Liu, S.: Robustness and discrimination oriented hashing combining texture and invariant vector distance. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1389–1397 (2018)Google Scholar
  11. 11.
    Huang, Z., Liu, S.: Robustness and discrimination oriented hashing combining texture and invariant vector distance. In: Proceedings of the 2018 ACM Multimedia Conference on Multimedia Conference, pp. 1389–1397 (2018)Google Scholar
  12. 12.
    Lin, C., Chang, Y.: A robust image authentication method distinguishing JPEG compression from malicious manipulation. IEEE Trans. Circuits Syst. Video Technol. 11(2), 153–168 (2001)CrossRefGoogle Scholar
  13. 13.
    Lu, C., Liao, S.: Structural digital signature for image authentication: an incidental distortion resistant scheme. IEEE Trans. Multimedia 5(2), 161–173 (2003)CrossRefGoogle Scholar
  14. 14.
    Venkatesan, R., Koon, S.M., Jakubowski, M.H.: Robust image hashing. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 664–666 (2000)Google Scholar
  15. 15.
    Fridrich, J., Goljan, M.: Robust hash functions for digital watermarking. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC), pp. 178–183 (2000)Google Scholar
  16. 16.
    Kozat, S., Venkatesan, R.: Robust perceptual image hashing via matrix invariants. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 3443–3446 (2004)Google Scholar
  17. 17.
    Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Trans. Inf. Forensics Secur. 1(2), 215–230 (2006)CrossRefGoogle Scholar
  18. 18.
    Yan, C., Pun, C., Yuan, X.: Multi-scale image hashing using adaptive local feature extraction for robust tampering detection. Signal Process. 121, 1–16 (2016)CrossRefGoogle Scholar
  19. 19.
    Pun, C.-M., Yan, C.-P., Yuan, X.-C.: Robust image hashing using progressive feature selection for tampering detection. Multimedia Tools Appl. 77(10), 11609–11633 (2017).  https://doi.org/10.1007/s11042-017-4809-4CrossRefGoogle Scholar
  20. 20.
    Kang, I.S., Seo, Y.H., Kim, D.W.: Blind digital watermarking methods for omnidirectional panorama images using feature points. Korean Inst. Broadcast Media Eng. 22(6), 785–799 (2017)Google Scholar
  21. 21.
    Qi, S., Zhao, Y.: Perceptual hashing for color image based on color opponent component and quadtree structure. Signal Process. 166, 107244 (2020)CrossRefGoogle Scholar
  22. 22.
    Cui, C., Wang, S.: Depth information estimation-based DIBR 3D image hashing using SIFT feature points. In: Pan, J.-S., Li, J., Tsai, P.-W., Jain, L.C. (eds.) Advances in Intelligent Information Hiding and Multimedia Signal Processing. SIST, vol. 157, pp. 371–379. Springer, Singapore (2020).  https://doi.org/10.1007/978-981-13-9710-3_39CrossRefGoogle Scholar
  23. 23.
    Bhattacharjee, S., Kutter, M.: Compression tolerant image authentication. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 435–439 (1998)Google Scholar
  24. 24.
    Monga, V., Evans, B.L.: Perceptual image hashing via feature points: performance evaluation and tradeoffs. IEEE Trans. Image Process. 15(11), 3452–3465 (2006)CrossRefGoogle Scholar
  25. 25.
    Abdoun, N., El Assad, S.: Secure hash algorithm based on efficient chaotic neural network. In: 2016 International Conference on Communications (COMM), pp. 405–410 (2016)Google Scholar
  26. 26.
    Abdoun, N., El Assad, S., Deforges, O., Assaf, R., Khalil, M.: Design and security analysis of two robust keyed hash functions based on chaotic neural networks. J. Ambient Intell. Hum. Comput. 1–25 (2019).  https://doi.org/10.1007/s12652-019-01244-y
  27. 27.
    Liu, Z., Qin, J., Li, A., Wang, Y.: Adversarial binary coding for efficient person re-identification. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 700–705 (2019)Google Scholar
  28. 28.
    Han, S., Chu, C.H.: Content-based image authentication: current status, issues, and challenges. Int. J. Inf. Secur. 9(1), 19–32 (2010)CrossRefGoogle Scholar
  29. 29.
    Lv, X., Wang, A.: Compressed binary image hashes based on semisupervised spectral embedding. IEEE Trans. Inf. Forensics Secur. 8(11), 1838–1849 (2013)CrossRefGoogle Scholar
  30. 30.
    Zheng, Z., Li, L.: Binary multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1774–1782 (2019)CrossRefGoogle Scholar
  31. 31.
    Venkatesan, R., Koon, S.M., Jakubowski, M.H., Moulin, P.: Robust image hashing. In: Proceedings of IEEE International Conference on Image Processing, pp. 664–666 (2001)Google Scholar
  32. 32.
    Tang, Z., Zhang, X., Li, X., Zhang, S.: Robust image hashing with ring partition and invariant vector distance. IEEE Trans. Inf. Forensics Secur. 11(1), 200–214 (2016)CrossRefGoogle Scholar
  33. 33.
    Yan, C., Pun, C., Yuan, X.: Quaternion-based image hashing for adaptive tampering localization. IEEE Trans. Inf. Forensics Secur. 11(12), 2664–2677 (2016)CrossRefGoogle Scholar
  34. 34.
    Dong, J., Wang, W.: CASIA image tampering detection evaluation database. In: 2013 IEEE China Summit and International Conference on Signal and Information Processing, pp. 422–426 (2013)Google Scholar
  35. 35.
    Korus, P., Huang, J.: Evaluation of random field models in multi-modal unsupervised tampering localization. In: 2016 IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2016)Google Scholar
  36. 36.
    Korus, P., Huang, J.: Multi-scale analysis strategies in PRNU-based tampering localization. IEEE Trans. Inf. Forensics Secur. 12(4), 809–824 (2017)CrossRefGoogle Scholar
  37. 37.
    Qin, C., Sun, M., Chang, C.: Perceptual hashing for color images based on hybrid extraction of structural features. Signal Process. 142, 194–205 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of Computer ScienceUniversity of SurreyGuildford, SurreyUK
  3. 3.Tianjin University of Science and TechnologyTianjinChina
  4. 4.Wuhan University of TechnologyWuhanChina

Personalised recommendations