Cyber-physical Autonomous Vehicular System (CAVS): A MAC Layer Perspective

  • Jahan Ali
  • Md Arafatur Rahman
  • Md Zakirul Alam Bhuiyan
  • A. Taufiq Asyhari
  • Mohammad Nomani Kabir


Cyber-physical autonomous vehicular system (CAVS) plays an important role in the automotive industries to enable interactions among functioning elements, including sensors and actuators, in order to ensure seamless data exchange and communications. Internet of things (IoT) is one of the key enabling technologies for designing such a system. In this chapter IoT is incorporated on the vehicular system to address the challenges and issues on designing an efficient CAVS. Although incorporating IoT on CAVS requires full consideration of all the protocol stacks, this article is aimed to focus only on the analysis from a media access control (MAC) layer point of view. More specifically, this article highlights the impact of IoT on vehicular systems based on the statistical information, state-of-the-art on MAC perspective, the framework of CAVS, and the open research issues. The outcome of this work will assist significantly in designing an efficient CAVS.


CAVS Internet of things IoT MAC Media access control VWN Protocol WSN Cyber-physical system CPS 



This work is partially supported by the project RDU150391 funded by University Malaysia Pahang.


  1. 1.
    A.M. Abbas, J. Ali, M.A. Rahman, S. Azad, Paper presented at the 2016 international conference on comparative investigation on CSMA/CA-based MAC protocols for scalable networks computer and communication engineering (ICCCE) (2016)Google Scholar
  2. 2.
    H. Abid, L.T.T. Phuong, J. Wang, S. Lee, S. Qaisar, V-Cloud: vehicular cyber-physical systems and cloud computing. Paper presented at the proceedings of the 4th international symposium on applied sciences in biomedical and communication technologies (2011)Google Scholar
  3. 3.
    M. Ahmed, C.U. Saraydar, T. ElBatt, J. Yin, T. Talty, & M. Ames, Intra-vehicular wireless networks. Paper presented at the Globecom workshops, IEEE, New York (2007)Google Scholar
  4. 4.
    A. Aijaz, A.H. Aghvami, Cognitive machine-to-machine communications for internet-of-things: a protocol stack perspective. IEEE Internet Things J. 2(2), 103–112 (2015)Google Scholar
  5. 5.
    A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surveys Tutorials 17(4), 2347–2376 (2015)Google Scholar
  6. 6.
    T. AlSkaif, B. Bellalta, M.G. Zapata, J.M.B. Ordinas, Energy efficiency of MAC protocols in low data rate wireless multimedia sensor networks: a comparative study. Ad Hoc Netw 56, 141–157 (2016)Google Scholar
  7. 7.
    A.S. Althobaiti, M. Abdullah, Medium access control protocols for wireless sensor networks classifications and cross-layering. Proc. Comp. Sci. 65, 4–16 (2015)Google Scholar
  8. 8.
    T. Anand, K. Banupriya, M. Deebika, A. Anusiya, T. Anand, K. Banupriya, et al., Intelligent transportation systems using iot service for vehicular data cloud. Int J Innov Res Sci Technol 2(2), 80–86 (2015)Google Scholar
  9. 9.
    M. Arifuzzaman, M. Matsumoto, T. Sato, An intelligent hybrid MAC with traffic-differentiation-based QoS for wireless sensor networks. IEEE Sensors J. 13(6), 2391–2399 (2013)Google Scholar
  10. 10.
    M.S. Azad, M.M. Uddin, F. Anwar, M.A. Rahman, Performance evaluation of wireless routing protocols in mobile wimax environment. Paper presented at the proceedings of the international multiconference of engineers and computer scientists (2008)Google Scholar
  11. 11.
    A. Bachir, M. Dohler, T. Watteyne, K.K. Leung, MAC essentials for wireless sensor networks. IEEE Commun Surv Tutorial 12(2), 222–248 (2010)Google Scholar
  12. 12.
    R.S. Bali, N. Kumar, Secure clustering for efficient data dissemination in vehicular cyber–physical systems. Futur. Gener. Comput. Syst. 56, 476–492 (2016)Google Scholar
  13. 13.
    C.U. Bas, S.C. Ergen, Ultra-wideband channel model for intra-vehicular wireless sensor networks beneath the chassis: from statistical model to simulations. IEEE Trans. Veh. Technol. 62(1), 14–25 (2013)Google Scholar
  14. 14.
    J. Beaudaux, A. Gallais, J. Montavont, T. Noel, D. Roth, E. Valentin, Thorough empirical analysis of X-MAC over a large scale internet of things testbed. IEEE Sensors J. 14(2), 383–392 (2014)Google Scholar
  15. 15.
    O. Bello, S. Zeadally, Intelligent device-to-device communication in the internet of things. IEEE Syst. J. 10(3), 1172–1182 (2016)Google Scholar
  16. 16.
    O. Bello, S. Zeadally, M. Badra, Network layer inter-operation of device-to-device communication technologies in internet of things (IoT). Ad Hoc Netw. 57, 52–62 (2017)Google Scholar
  17. 17.
    M.Z.A. Bhuiyan, G. Wang, J. Cao, J. Wu, Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Trans. Comput. 64(2), 382–395 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    M.Z.A. Bhuiyan, G. Wang, J. Wu, J. Cao, X. Liu, T. Wang, Dependable structural health monitoring using wireless sensor networks. IEEE Trans Depend Secure Comput 14(4), 363–376 (2017)Google Scholar
  19. 19.
    S. Bitam, A. Mellouk, S. Zeadally, VANET-cloud: a generic cloud computing model for vehicular ad hoc networks. IEEE Wirel. Commun. 22(1), 96–102 (2015)Google Scholar
  20. 20.
    T.M. Bojan, U.R. Kumar, V.M. Bojan, An internet of things based intelligent transportation system. Paper presented at the 2014 IEEE international conference on vehicular electronics and safety (ICVES) (2014)Google Scholar
  21. 21.
    A. Burg, A. Chattopadhyay, K.-Y. Lam, Wireless communication and security issues for cyber–physical systems and the internet-of-things. Proc. IEEE 106(1), 38–60 (2018)Google Scholar
  22. 22.
    A.S. Cacciapuoti, M. Caleffi, L. Paura, M.A. Rahman, Link quality estimators for multi-hop mesh network. Paper presented at the Euro Med Telco conference (EMTC) (2014)Google Scholar
  23. 23.
    L. Cao, W. Xu, X. Lin, J. Lin, A CSMA/TDMA dynamic splitting scheme for MAC protocol in VANETs. Paper presented at the 2013 international conference on Wireless Communications & Signal Processing (WCSP) (2013)Google Scholar
  24. 24.
    R.C. Carrano, D. Passos, L.C. Magalhaes, C.V. Albuquerque, Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Commun Surv Tutorial 16(1), 181–194 (2014)Google Scholar
  25. 25.
    D. Centea, I. Singh, M. Elbestawi, Framework for the development of a cyber-physical systems learning centre, in Online Engineering & Internet of Things, (Springer, Cham, 2018), pp. 919–930Google Scholar
  26. 26.
    D. Cerotti, S. Distefano, G. Merlino, A. Puliafito, A crowd-cooperative approach for intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 18(6), 1529–1539 (2017)Google Scholar
  27. 27.
    K. Chen, M. Ma, E. Cheng, F. Yuan, W. Su, A survey on MAC protocols for underwater wireless sensor networks. IEEE Commun Surv Tutorial 16(3), 1433–1447 (2014)Google Scholar
  28. 28.
    Q. Chi, H. Yan, C. Zhang, Z. Pang, L. Da Xu, A reconfigurable smart sensor interface for industrial WSN in IoT environment. IEEE Trans Industr Inform 10(2), 1417–1425 (2014)Google Scholar
  29. 29.
    S. Climent, A. Sanchez, J.V. Capella, N. Meratnia, J.J. Serrano, Underwater acoustic wireless sensor networks: Advances and future trends in physical, MAC and routing layers. Sensors 14(1), 795–833 (2014)Google Scholar
  30. 30.
    J. Contreras-Castillo, S. Zeadally, J.A. Guerrero Ibáñez, A seven-layered model architecture for internet of vehicles. J Inform Telecommun 1(1), 4–22 (2017)Google Scholar
  31. 31.
    D.N.M. Dang, H.N. Dang, V. Nguyen, Z. Htike, C.S. Hong. HER-MAC: A hybrid efficient and reliable MAC for vehicular ad hoc networks. Paper presented at the 2014 IEEE 28th international conference on advanced information networking and applications (AINA) (2014)Google Scholar
  32. 32.
    F.Z. Djiroun, D. Djenouri, MAC protocols with wake-up Radio for Wireless Sensor Networks: a review. IEEE Commun Surv Tutorial 19(1), 587–618 (2017)Google Scholar
  33. 33.
    M. Dong, K. Ota, A. Liu, RMER: reliable and energy-efficient data collection for large-scale wireless sensor networks. IEEE Internet Things J. 3(4), 511–519 (2016)Google Scholar
  34. 34.
    M. Doudou, D. Djenouri, N. Badache, A. Bouabdallah, Synchronous contention-based MAC protocols for delay-sensitive wireless sensor networks: a review and taxonomy. J. Netw. Comput. Appl. 38, 172–184 (2014)Google Scholar
  35. 35.
    T. ElBatt, C. Saraydar, M. Ames, T. Talty, Potential for intra-vehicle wireless automotive sensor networks. Paper presented at the 2006 IEEE Sarnoff symposium (2006)Google Scholar
  36. 36.
    Y. Feng, B. Hu, H. Hao, Y. Gao, Z. Li, J. Tan, Design of distributed cyber-physical systems for connected and automated vehicles with implementing methodologies. IEEE Trans Indus Inform 14(9), P4200–P4211 (2018)Google Scholar
  37. 37.
    M.H.S. Gilani, I. Sarrafi, M. Abbaspour, An adaptive CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks. Ad Hoc Netw. 11(4), 1297–1304 (2013)Google Scholar
  38. 38.
    S. Gill, P. Sahni, P. Chawla, S. Kaur, Intelligent transportation architecture for enhanced security and integrity in vehicles integrated internet of things. Indian J. Sci. Technol. 10(10), 1–5 (2017)Google Scholar
  39. 39.
    S.A. Gopalan, D.-H. Kim, J.-W. Nah, J.-T. Park, A survey on power-efficient MAC protocols for wireless body area networks. Paper presented at the 3rd IEEE international conference on broadband network and multimedia technology (IC-BNMT) (2010)Google Scholar
  40. 40.
    S.A. Gopalan, J.-T. Park, Energy-efficient MAC protocols for wireless body area networks: survey. Paper presented at the 2010 international congress on ultra modern telecommunications and control systems and workshops (ICUMT) (2010)Google Scholar
  41. 41.
    J.A. Guerrero-ibanez, S. Zeadally, J. Contreras-Castillo, Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and internet of things technologies. IEEE Wirel. Commun. 22(6), 122–128 (2015)Google Scholar
  42. 42.
    W. Guo, L. Huang, L. Chen, H. Xu, C. Miao, R-mac: risk-aware dynamic mac protocol for vehicular cooperative collision avoidance system. Int J Distributed Sensor Netw 9(5), 686713 (2013)Google Scholar
  43. 43.
    N. Gupta, A. Prakash, R. Tripathi, Medium access control protocols for safety applications in vehicular ad-hoc network: a classification and comprehensive survey. Veh Commun 2(4), 223–237 (2015)Google Scholar
  44. 44.
    M. Hadded, P. Muhlethaler, A. Laouiti, R. Zagrouba, L.A. Saidane, TDMA-based MAC protocols for vehicular ad hoc networks: a survey, qualitative analysis, and open research issues. IEEE Commun Surv Tutorial 17(4), 2461–2492 (2015)Google Scholar
  45. 45.
    W. He, G. Yan, L. Da Xu, Developing vehicular data cloud services in the IoT environment. IEEE Trans Indus Inform 10(2), 1587–1595 (2014)Google Scholar
  46. 46.
    V.J. Hodge, S. O'Keefe, M. Weeks, A. Moulds, Wireless sensor networks for condition monitoring in the railway industry: a survey. IEEE Trans. Intell. Transp. Syst. 16(3), 1088–1106 (2015)Google Scholar
  47. 47.
    P. Huang, L. Xiao, S. Soltani, M.W. Mutka, N. Xi, The evolution of MAC protocols in wireless sensor networks: a survey. IEEE Commun Surv Tutorial 15(1), 101–120 (2013)Google Scholar
  48. 48.
    P. Hurni, T. Braun, Maxmac: a maximally traffic-adaptive mac protocol for wireless sensor networks. Paper presented at the European conference on wireless sensor networks (2010)Google Scholar
  49. 49.
    V. Jayaraj, C. Hemanth, R. Sangeetha, A survey on hybrid MAC protocols for vehicular ad-hoc networks. Veh Commun 6, 29–36 (2016)Google Scholar
  50. 50.
    D. Jia, K. Lu, J. Wang, On the network connectivity of platoon-based vehicular cyber-physical systems. Transport Res Part C: EmerTechnol 40, 215–230 (2014)Google Scholar
  51. 51.
    D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen, A survey on platoon-based vehicular cyber-physical systems. IEEE Commun Surv Tutorial 18(1), 263–284 (2016)Google Scholar
  52. 52.
    Y. Jiang, S. Yin, Recursive total principle component regression based fault detection and its application to vehicular cyber-physical systems. IEEE Trans Indus Inform 14(4), 1415–1423 (2017)Google Scholar
  53. 53.
    J. Jin, J. Gubbi, S. Marusic, M. Palaniswami, An information framework for creating a smart city through internet of things. IEEE Internet Things J. 1(2), 112–121 (2014)Google Scholar
  54. 54.
    A. Kakria, T.C. Aseri, Survey of synchronous MAC protocols for wireless sensor networks. Paper presented at the 2014 recent advances in engineering and computational sciences (RAECS) (2014)Google Scholar
  55. 55.
    P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C. Leung, Y.L. Guan, Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53(6), 102–108 (2015)Google Scholar
  56. 56.
    S.D.T. Kelly, N.K. Suryadevara, S.C. Mukhopadhyay, Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sensors J. 13(10), 3846–3853 (2013)Google Scholar
  57. 57.
    A.A. Khan, M.H. Rehmani, M. Reisslein, Cognitive radio for smart grids: survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Commun Surv Tutorial 18(1), 860–898 (2016)Google Scholar
  58. 58.
    R.A.M. Khan, H. Karl, MAC protocols for cooperative diversity in wireless LANs and wireless sensor networks. IEEE Commun Surv Tutorial 16(1), 46–63 (2014)Google Scholar
  59. 59.
    J. Kim, J. Lee, J. Kim, J. Yun, M2M service platforms: Survey, issues, and enabling technologies. IEEE Commun Surv Tutorial 16(1), 61–76 (2014)Google Scholar
  60. 60.
    N. Kumar, M. Singh, S. Zeadally, J.J. Rodrigues, S. Rho, Cloud-assisted context-aware vehicular cyber-physical system for PHEVs in smart grid. IEEE Syst. J. 11(1), 140–151 (2017)Google Scholar
  61. 61.
    M. Kumaraswamy, K. Shaila, V. Tejaswi, K. Venugopal, S. Iyengar, L. Patnaik, QoS driven distributed multi-channel scheduling MAC protocol for multihop WSNs. Paper presented at the 2014 international conference on computer and communication technology (ICCCT) (2014)Google Scholar
  62. 62.
    I. Lee, K. Lee, The internet of things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)Google Scholar
  63. 63.
    X. Li, X. Yu, A. Wagh, C. Qiao, Human factors-aware service scheduling in vehicular cyber-physical systems. Paper presented at the 2011 proceedings IEEE INFOCOM (2011)Google Scholar
  64. 64.
    R. Liao, B. Bellalta, M. Oliver, Z. Niu, MU-MIMO MAC protocols for wireless local area networks: a survey. IEEE Commun Surv Tutorial 18(1), 162–183 (2016)Google Scholar
  65. 65.
    J.-R. Lin, T. Talty, O.K. Tonguz, A blind zone alert system based on intra-vehicular wireless sensor networks. IEEE Trans Indus Inform 11(2), 476–484 (2015a)Google Scholar
  66. 66.
    J.-R. Lin, T. Talty, O.K. Tonguz, On the potential of bluetooth low energy technology for vehicular applications. IEEE Commun. Mag. 53(1), 267–275 (2015b)Google Scholar
  67. 67.
    Y. Liu, C. Yuen, X. Cao, N.U. Hassan, J. Chen, Design of a scalable hybrid MAC protocol for heterogeneous M2M networks. IEEE Internet Things J. 1(1), 99–111 (2014)Google Scholar
  68. 68.
    N. Lu, N. Cheng, N. Zhang, X. Shen, J.W. Mark, Connected vehicles: solutions and challenges. IEEE Internet Things J. 1(4), 289–299 (2014)Google Scholar
  69. 69.
    N. Lu, Y. Ji, F. Liu, X. Wang, A dedicated multi-channel MAC protocol design for VANET with adaptive broadcasting. Paper presented at the 2010 IEEE wireless communications and networking conference (WCNC) (2010)Google Scholar
  70. 70.
    L. Mainetti, L. Patrono, A. Vilei, Evolution of wireless sensor networks towards the internet of things: a survey. Paper presented at the 2011 19th international conference on software, telecommunications and computer networks (SoftCOM) (2011)Google Scholar
  71. 71.
    T. Maitra, S. Roy, A comparative study on popular MAC protocols for mixed wireless sensor networks: from implementation viewpoint. Comput Sci Rev 22, 107–134 (2016)MathSciNetGoogle Scholar
  72. 72.
    R.T. Matani, T.M. Vasavada, A survey on MAC protocols for data collection in wireless sensor networks. Int J Comput Appl 114(6), 4–7 (2015)Google Scholar
  73. 73.
    A. Miloslavov, M. Veeraraghavan, Sensor data fusion algorithms for vehicular cyber-physical systems. IEEE Trans Parallel Distribut Syst 23(9), 1762–1774 (2012)Google Scholar
  74. 74.
    S. Mishra, R.R. Swain, T.K. Samal, M.R. Kabat, CS-ATMA: a hybrid single channel MAC layer protocol for wireless sensor networks, in Computational Intelligence in Data Mining, vol. 3, (Springer, New York, 2015), pp. 271–279Google Scholar
  75. 75.
    P.D. Mitchell, J. Qiu, H. Li, D. Grace, Use of aerial platforms for energy efficient medium access control in wireless sensor networks. Comput. Commun. 33(4), 500–512 (2010)Google Scholar
  76. 76.
    M. Nabi, M. Geilen, T. Basten, M. Blagojevic, Efficient cluster mobility support for TDMA-based MAC protocols in wireless sensor networks. ACM Trans Sensor Netw (TOSN) 10(4), 65 (2014)Google Scholar
  77. 77.
    A.H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, Q.Z. Sheng, IoT middleware: a survey on issues and enabling technologies. IEEE Internet Things J. 4(1), 1–20 (2017)Google Scholar
  78. 78.
    V. Nguyen, T.Z. Oo, P. Chuan, C.S. Hong, An efficient time slot acquisition on the hybrid TDMA/CSMA multichannel MAC in VANETs. IEEE Commun. Lett. 20(5), 970–973 (2016)Google Scholar
  79. 79.
    K. Ovsthus, L.M. Kristensen, An industrial perspective on wireless sensor networks—a survey of requirements, protocols, and challenges. IEEE Commun Surv Tutorial 16(3), 1391–1412 (2014)Google Scholar
  80. 80.
    J. Park, C. Lee, J.-H. Park, B-c. Choi, & J. G Ko,. Poster: exploiting wireless CAN bus bridges for intra-vehicle communications. Paper presented at the 2014 IEEE vehicular networking conference (VNC) (2014)Google Scholar
  81. 81.
    G. Parsons, Standardizing machine-to-machine (M2M) communications. IEEE Commun. Mag. 54(12), 2–3 (2016)Google Scholar
  82. 82.
    A. Rahim, N. Javaid, M. Aslam, Z. Rahman, U. Qasim, Z. Khan, A comprehensive survey of MAC protocols for wireless body area networks. Paper presented at the 2012 seventh international conference on broadband, wireless computing, communication and applications (BWCCA) (2012)Google Scholar
  83. 83.
    M. Rahman, J. Ali, M.N. Kabir, S. Azad, A performance investigation on IoT enabled intra-vehicular wireless sensor networks. Int J Autom Mech Eng 14(1), 3970–3984 (2017)Google Scholar
  84. 84.
    M.A. Rahman, Design of wireless sensor network for intra-vehicular communications. Paper presented at the international conference on wired/wireless internet communications (2014a)Google Scholar
  85. 85.
    M.A. Rahman, Reliability analysis of ZigBee based intra-vehicle wireless sensor networks. Paper presented at the international workshop on communication technologies for vehicles (2014b)Google Scholar
  86. 86.
    M.A. Rahman, M.S. Azad, F. Anwar, Intergating multiple metrics to improve the performance of a routing protocol over wireless mesh networks. Paper presented at the 2009 international conference on signal processing systems (2009)Google Scholar
  87. 87.
    M.A. Rahman, M.N. Kabir, S. Azad, J. Ali, On mitigating hop-to-hop congestion problem in IoT enabled intra-vehicular communication. Paper presented at the 2015 4th international conference on software engineering and computer systems (ICSECS) (2015)Google Scholar
  88. 88.
    A. Rai, S. Deswal, P. Singh, MAC protocols in wireless sensor network: A survey. Int J New Innov Eng Technol 5(1), 95–101 (2016)Google Scholar
  89. 89.
    A. Rajandekar, B. Sikdar, A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet Things J. 2(2), 175–186 (2015)Google Scholar
  90. 90.
    Y. Rao, Y.-m. Cao, C. Deng, Z.-h. Jiang, J. Zhu, L.-y. Fu, R.-c. Wang, Performance analysis and simulation verification of S-MAC for wireless sensor networks. Comput Electr Eng 56, 468–484 (2016)Google Scholar
  91. 91.
    M.B. Rasheed, N. Javaid, M. Imran, Z.A. Khan, U. Qasim, A. Vasilakos, Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wirel. Netw 23(4), 1249–1266 (2017)Google Scholar
  92. 92.
    D.B. Rawat, C. Bajracharya, Adaptive connectivity for vehicular cyber-physical systems, in Vehicular Cyber Physical Systems, (Springer, Cham, 2017a), pp. 15–24Google Scholar
  93. 93.
    D.B. Rawat, C. Bajracharya, An overview of vehicular networking and cyber-physical systems, in Vehicular Cyber Physical Systems, (Springer, Cham, 2017b), pp. 1–13Google Scholar
  94. 94.
    D.B. Rawat, C. Bajracharya, Vehicular Cyber Physical Systems (Springer, Cham, 2017c)Google Scholar
  95. 95.
    S. Ray, I. Demirkol, W. Heinzelman, Supporting bursty traffic in wireless sensor networks through a distributed advertisement-based TDMA protocol (ATMA). Ad Hoc Netw. 11(3), 959–974 (2013)Google Scholar
  96. 96.
    A. Razaque, K.M. Elleithy, Energy-efficient boarder node medium access control protocol for wireless sensor networks. Sensors 14(3), 5074–5117 (2014)Google Scholar
  97. 97.
    A. Razaque, K.M. Elleithy, Low duty cycle, energy-efficient and mobility-based boarder node—MAC hybrid protocol for wireless sensor networks. J Sig Process Syst 81(2), 265–284 (2015)Google Scholar
  98. 98.
    S. Reis, D. Pesch, B.-L. Wenning, M. Kuhn, Intra-vehicle wireless sensor network communication quality assessment via packet delivery ratio measurements. Paper presented at the international conference on mobile networks and management (2016)Google Scholar
  99. 99.
    L. Rezazade, H.S. Aghdasi, S.A. Ghorashi, M. Abbaspour, A novel STDMA MAC protocol for vehicular ad-hoc networks. Paper presented at the 2011 international symposium on computer networks and distributed systems (CNDS) (2011)Google Scholar
  100. 100.
    M. Salajegheh, H. Soroush, A. Kalis, HYMAC: Hybrid TDMA/FDMA medium access control protocol for wireless sensor networks. Paper presented at the IEEE 18th international symposium on personal, indoor and mobile radio communications. PIMRC 2007 (2007)Google Scholar
  101. 101.
    Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, K. Leung, A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wirel. Commun. 20(6), 91–98 (2013)Google Scholar
  102. 102.
    L. Shi, A.O. Fapojuwo, TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks. IEEE Trans. Mob. Comput. 9(7), 927–940 (2010)Google Scholar
  103. 103.
    B. Shrestha, E. Hossain, K.W. Choi, Distributed and centralized hybrid CSMA/CA-TDMA schemes for single-hop wireless networks. IEEE Trans. Wirel. Commun. 13(7), 4050–4065 (2014)Google Scholar
  104. 104.
    M. Shu, D. Yuan, C. Zhang, Y. Wang, C. Chen, A MAC protocol for medical monitoring applications of wireless body area networks. Sensors 15(6), 12906–12931 (2015)Google Scholar
  105. 105.
    J. Song, A. Kunz, R.R.V. Prasad, Z. Sheng, R. Yu, Research to standards: next generation IoT/M2M applications, networks and architectures. IEEE Commun. Mag. 54(12), 14–15 (2016)Google Scholar
  106. 106.
    B.L.R. Stojkoska, K.V. Trivodaliev, A review of internet of things for smart home: challenges and solutions. J. Clean. Prod. 140, 1454–1464 (2017)Google Scholar
  107. 107.
    W. Sun, J. Liu, H. Zhang, When smart wearables meet intelligent vehicles: challenges and future directions. IEEE Wirel. Commun. 24(3), 58–65 (2017)Google Scholar
  108. 108.
    P. Suriyachai, U. Roedig, A. Scott, A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Commun Surv Tutorial 14(2), 240–264 (2012)Google Scholar
  109. 109.
    R.R. Swain, S. Mishra, T.K. Samal, M.R. Kabat, An energy efficient advertisement based multichannel distributed MAC protocol for wireless sensor networks (Adv-MMAC). Wirel. Pers. Commun. 95(2), 655–682 (2017)Google Scholar
  110. 110.
    N. Torabi, B.S. Ghahfarokhi, A bandwidth-efficient and fair CSMA/TDMA based multichannel MAC scheme for V2V communications. Telecommun. Syst. 64(2), 367–390 (2017)Google Scholar
  111. 111.
    S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, L. Kilmartin, Intra-vehicle networks: A review. IEEE Trans. Intell. Transp. Syst. 16(2), 534–545 (2015)Google Scholar
  112. 112.
    P. Tuset-Peiro, F. Vazquez-Gallego, J. Alonso-Zarate, L. Alonso, X. Vilajosana, LPDQ: A self-scheduled TDMA MAC protocol for one-hop dynamic low-power wireless networks. Perv Mobile Comput 20, 84–99 (2015)Google Scholar
  113. 113.
    L. Uden, L. Uden, W. He, W. He, How the internet of things can help knowledge management: a case study from the automotive domain. J. Knowl. Manag. 21(1), 57–70 (2017)Google Scholar
  114. 114.
    P. Vlacheas, R. Giaffreda, V. Stavroulaki, D. Kelaidonis, V. Foteinos, G. Poulios, et al., Enabling smart cities through a cognitive management framework for the internet of things. IEEE Commun. Mag. 51(6), 102–111 (2013)Google Scholar
  115. 115.
    J. Wan, D. Zhang, S. Zhao, L. Yang, J. Lloret, Context-aware vehicular cyber-physical systems with cloud support: Architecture, challenges, and solutions. IEEE Commun. Mag. 52(8), 106–113 (2014)Google Scholar
  116. 116.
    C. Wang, Z. Zhao, L. Zhu, H. Yao, An energy efficient routing protocol for in-vehicle wireless sensor networks. Paper presented at the international conference of pioneering computer scientists, engineers and educators (2017)Google Scholar
  117. 117.
    S. Woo, H.J. Jo, I.S. Kim, D.H. Lee, A practical security architecture for in-vehicle CAN-FD. IEEE Trans. Intell. Transp. Syst. 17(8), 2248–2261 (2016)Google Scholar
  118. 118.
    S. Woo, H.J. Jo, D.H. Lee, A practical wireless attack on the connected car and security protocol for in-vehicle CAN. IEEE Trans. Intell. Transp. Syst. 16(2), 993–1006 (2015)Google Scholar
  119. 119.
    H. Wu, Y. Liu, Q. Zhang, Z.-L. Zhang, SoftMAC: Layer 2.5 collaborative MAC for multimedia support in multihop wireless networks. IEEE Trans Mob Comput 6(1), 12–25 (2007)Google Scholar
  120. 120.
    B. Yahya, J. Ben-Othman, Towards a classification of energy aware MAC protocols for wireless sensor networks. Wirel. Commun. Mob. Comput. 9(12), 1572–1607 (2009)Google Scholar
  121. 121.
    M. Yigit, O. Durmaz Incel, S. Baktir, V.C. Gungor, QoS-aware MAC protocols utilizing sectored antenna for wireless sensor networks-based smart grid applications. Int. J. Commun. Syst. 30(7), e3168 (2017)Google Scholar
  122. 122.
    C. Yin, Y. Li, D. Zhang, Y. Cheng, M. Yin, DSMAC: An energy-efficient MAC protocol in event-driven sensor networks. Paper presented at the 2nd international conference on advanced computer control (ICACC) (2010)Google Scholar
  123. 123.
    Y. Zhang, B. Chen, X. Lu, Intelligent monitoring system on refrigerator trucks based on the internet of things. Paper presented at the international conference on wireless communications and applications (2011)Google Scholar
  124. 124.
    Y. Zhao, M. Ma, C. Miao, T. Nguyen, An energy-efficient and low-latency MAC protocol with adaptive scheduling for multi-hop wireless sensor networks. Comput. Commun. 33(12), 1452–1461 (2010)Google Scholar
  125. 125.
    H. Zhou, B. Liu, D. Wang, Design and research of urban intelligent transportation system based on the internet of things. Internet of Things 312, 572–580 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jahan Ali
    • 1
  • Md Arafatur Rahman
    • 1
    • 2
  • Md Zakirul Alam Bhuiyan
    • 3
  • A. Taufiq Asyhari
    • 4
  • Mohammad Nomani Kabir
    • 1
  1. 1.Faculty of Computer Science and Software EngineeringUniversity Malaysia PahangPahangMalaysia
  2. 2.IBM Center of ExcellenceUniversity Malaysia PahangPahangMalaysia
  3. 3.Department of Computer and Information Sciences, Fordham UniversityBronxUSA
  4. 4.Centre for Electronic Warfare, Information and CyberCranfield University, Defence Academy of the UKShrivenhamUK

Personalised recommendations