Advanced Communications in Cyber-Physical Systems

  • Taslim Arefin Khan
  • Suraiya Tairin
  • Mahmuda Naznin
  • Md Zakirul Alam Bhuyian
  • A.  B.  M. Alim Al Islam


The recent technological developments offer us a new generation of systems known as cyber-physical systems (CPSs). The emergence of CPSs introduces specialized networking and communication strategy, information technology, integrating them with physical world which enables the advancement of a new vision for the social facilities. A CPS is the integration of computation, communication, control, learning, and reasoning with physical processes. CPSs cannot be considered as conventional real-time systems or embedded systems. There are several features that exist in CPSs which make it different from other systems such as dynamically reconfigurable, fully automation, auto-assembly, and integration


  1. 1.
    T. Sanislav, L. Miclea, Cyber-physical systems-concept, challenges and research areas. J. Control Eng. Appl. Inf. 14(2), 28–33 (2012)Google Scholar
  2. 2.
    S. Ali, S.B. Qaisar, H. Saeed, M.F. Khan, M. Naeem, A. Anpalagan, Network challenges for cyber physical systems with tiny wireless devices: a case study on reliable pipeline condition monitoring. Sensors 15(4), 7172–7205 (2015)Google Scholar
  3. 3.
    N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I. Jawhar, Middleware to support cyber-physical systems, in 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC) (IEEE, Piscataway, 2016), pp. 1–3Google Scholar
  4. 4.
    J. Chen, X. Cao, P. Cheng, Y. Xiao, Y. Sun, Distributed collaborative control for industrial automation with wireless sensor and actuator networks. IEEE Trans. Ind. Electron. 57(12), 4219–4230 (2010)Google Scholar
  5. 5.
    A. Nayak, I. Stojmenovic, Wireless Sensor and Actuator Networks: Algorithms and Protocols for Scalable Coordination and Data Communication (Wiley, Hoboken, 2010)zbMATHGoogle Scholar
  6. 6.
    F. Xia, L. Ma, J. Dong, Y. Sun, Network QoS management in cyber-physical systems, in International Conference on Embedded Software and Systems Symposia, 2008. ICESS Symposia’08 (IEEE, Piscataway, 2008), pp. 302–307Google Scholar
  7. 7.
    F. Xia, A. Vinel, R. Gao, L. Wang, T. Qiu, Evaluating IEEE 802.15. 4 for cyber-physical systems. EURASIP J. Wirel. Commun. Netw. 2011(1), 596397 (2011)Google Scholar
  8. 8.
    L.S. Committee et al., Part 15.4: Wireless Medium Access Control (mac) and Physical Layer (phy) Specifications for Low-rate Wireless Personal Area Networks (lr-wpans) (IEEE Computer Society, Washington, 2003)Google Scholar
  9. 9.
    J. Zheng, M. Lee, A comprehensive performance study of IEEE 802.15. 4. Sensor Network Operations, 1–14 (2004)Google Scholar
  10. 10.
    E. Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Naeve, B. Heile, V. Bahl, Home networking with IEEE 802.15. 4: a developing standard for low-rate wireless personal area networks. IEEE Commun. Mag. 40(8), 70–77 (2002)Google Scholar
  11. 11.
    MAC, IEEE 802.15.4 (2003). Accessed 20 Nov 2017
  12. 12.
    B.P. Crow, I. Widjaja, L. Kim, P.T. Sakai, IEEE 802.11 wireless local area networks. IEEE Commun. Mag. 35(9), 116–126 (1997)Google Scholar
  13. 13.
    J.W. Hui, D.E. Culler, IP is dead, long live IP for wireless sensor networks, in Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems (ACM, New York, 2008), pp. 15–28Google Scholar
  14. 14.
    S. Deering, R. Hinden, RFC2460: Internet Protocol, Version 6 (IPv6) Specification (RFC Editor, USA, 1998)Google Scholar
  15. 15.
    H. Li, L. Lai, H.V. Poor, Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE J. Sel. Areas Commun. 30(6), 1097–1107 (2012)Google Scholar
  16. 16.
    C. Langbort, V. Gupta, Minimal interconnection topology in distributed control design. SIAM J. Control Optim. 48(1), 397–413 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    M.R. Haque, M. Naznin, Monitoring cost reduction in sensor networks using proximity queries. JNW 6(1), 4–11 (2011) [Online]. Available
  19. 19.
    N. Majadi, M. Naznin, T. Ahmed, Energy efficient local search based target localization in an UWSN, in 12th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2016, New York, NY, October 17–19, 2016 (2016), pp. 1–8Google Scholar
  20. 20.
    M.S. Rahman, M. Naznin, T. Ahmed, Efficient routing in a sensor network using collaborative ants, in Advances in Swarm Intelligence, 7th International Conference, ICSI 2016, Bali, June 25–30, 2016, Proceedings, Part II (2016), pp. 333–340Google Scholar
  21. 21.
    W. Kang, K. Kapitanova, S.H. Son, Rdds: a real-time data distribution service for cyber-physical systems. IEEE Trans. Ind. Inf. 8(2), 393–405 (2012)Google Scholar
  22. 22.
    S. Oh, J.-H. Kim, G. Fox, Real-time performance analysis for publish/subscribe systems. Futur. Gener. Comput. Syst. 26(3), 318–323 (2010)Google Scholar
  23. 23.
    H. Ahmadi, T.F. Abdelzaher, I. Gupta, Congestion control for spatio-temporal data in cyber-physical systems, in Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems (ACM, New York 2010), pp. 89–98Google Scholar
  24. 24.
    A.A. Al Islam, S.I. Alam, V. Raghunathan, S. Bagchi, Multi-armed bandit congestion control in multi-hop infrastructure wireless mesh networks, in 2012 IEEE 20th International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS) (IEEE, Piscataway, 2012), pp. 31–40Google Scholar
  25. 25.
    A.A. Al Islam, V. Raghunathan, End-to-end congestion control in wireless mesh networks using a neural network, in Wireless Communications and Networking Conference (WCNC), 2011 IEEE (IEEE, Piscataway, 2011), pp. 677–682Google Scholar
  26. 26.
    I.F. Akyildiz, X. Wang, W. Wang, Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)zbMATHGoogle Scholar
  27. 27.
    J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)MathSciNetzbMATHGoogle Scholar
  28. 28.
    A.A. Al Islam, V. Raghunathan, iTCP: an intelligent TCP with neural network based end-to-end congestion control for ad-hoc multi-hop wireless mesh networks. Wirel. Netw. 21(2), 581–610 (2015)Google Scholar
  29. 29.
    P. Karn, C. Partridge, Improving round-trip time estimates in reliable transport protocols. ACM SIGCOMM Comput. Commun. Rev. 17(5), 2–7 (1987)Google Scholar
  30. 30.
    A.A. Al Islam, V. Raghunathan, QRTT: Stateful round trip time estimation for wireless embedded systems using Q-learning. IEEE Embed. Syst. Lett. 4(4), 102–105 (2012)Google Scholar
  31. 31.
    P. Dayan, C. Watkins, Q-learning. Mach. Learn. 8(3), 279–292 (1992)zbMATHGoogle Scholar
  32. 32.
    A.A. Al Islam, V. Raghunathan, Evaluating Q-learning based stateful round trip time estimation over high-data-rate wireless sensor networks, in 2013 16th International Conference on Computer and Information Technology (ICCIT) (IEEE, Piscataway, 2014), pp. 136–141Google Scholar
  33. 33.
    K. Jacobsson, H. Hjalmarsson, N. Möller, K.H. Johansson, Estimation of RTT and bandwidth for congestion control applications in communication networks, in IEEE CDC, Paradise Island (IEEE, Piscataway, 2004)Google Scholar
  34. 34.
    A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter (Cambridge University Press, Cambridge, 1990)zbMATHGoogle Scholar
  35. 35.
    F. Gustafsson, F. Gustafsson, Adaptive Filtering and Change Detection, vol. 1 (Wiley, New York, 2000)zbMATHGoogle Scholar
  36. 36.
    A. Kesselman, Y. Mansour, Optimizing TCP retransmission timeout, in Networking-ICN 2005 (2005), pp. 133–140Google Scholar
  37. 37.
    L. Militano, G. Araniti, M. Condoluci, I. Farris, A. Iera, Device-to-device communications for 5g internet of things, in IOT, EAI (2015)Google Scholar
  38. 38.
    G. Camarillo, M.-A. Garcia-Martin, The 3G IP Multimedia Subsystem (IMS): Merging the Internet and the Cellular Worlds (Wiley, Chichester, 2007)Google Scholar
  39. 39.
    V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, J. Alonso-Zarate, A survey on application layer protocols for the internet of things. Trans. IoT Cloud Comput. 3(1), 11–17 (2015)Google Scholar
  40. 40.
    L. Fourati, L. Kamoun, Performance Analysis of IEEE 802.15.4/Zigbee Standard Under Real Time Constraints. International Journal of Computer Networks & Communications 315 (2011).
  41. 41.
    Z. Shelby, C. Bormann, 6LoWPAN: The Wireless Embedded Internet, vol. 43 (Wiley, Chichester, 2011)Google Scholar
  42. 42.
    J. Gozalvez, New 3gpp standard for iot [mobile radio]. IEEE Veh. Technol. Mag. 11(1), 14–20 (2016)Google Scholar
  43. 43.
  44. 44.
    AMQP, Advanced message queuing protocol (2003). Accessed 20 Nov 2017
  45. 45.
    S. Lee, H. Kim, D.-k. Hong, H. Ju, Correlation analysis of MQTT loss and delay according to QoS level, in 2013 International Conference on Information Networking (ICOIN) (IEEE, Piscataway, 2013), pp. 714–717Google Scholar
  46. 46.
    F.T. Johnsen, T.H. Bloebaum, M. Avlesen, S. Spjelkavik, B. Vik, Evaluation of transport protocols for web services, in Military Communications and Information Systems Conference (MCC), 2013 (IEEE, Piscataway, 2013), pp. 1–6Google Scholar
  47. 47.
    D. Thangavel, X. Ma, A. Valera, H.-X. Tan, C.K.-Y. Tan, Performance evaluation of MQTT and CoAP via a common middleware, in 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (IEEE, Piscataway, 2014), pp. 1–6Google Scholar
  48. 48.
  49. 49.
    F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog computing: a platform for internet of things and analytics, in Big Data and Internet of Things: A Roadmap for Smart Environments (Springer, Cham, 2014), pp. 169–186Google Scholar
  50. 50.
    A.A. Al Islam, M.J. Islam, N. Nurain, V. Raghunathan, Channel assignment techniques for multi-radio wireless mesh networks: a survey. IEEE Commun. Surv. Tutorials 18(2), 988–1017 (2016)Google Scholar
  51. 51.
    P. Gupta, P.R. Kumar, The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)MathSciNetzbMATHGoogle Scholar
  52. 52.
    H. Dinh, Y.-A. Kim, S. Lee, M. Shin, B. Wang, SDP-based approach for channel assignment in multi-radio wireless networks. Networks 13, 15 (2007)Google Scholar
  53. 53.
    M. Shin, S. Lee, Y.-a. Kim, Distributed channel assignment for multi-radio wireless networks, in 2006 IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS) (IEEE, Piscataway, 2006), pp. 417–426Google Scholar
  54. 54.
    Y. Ding, K. Pongaliur, L. Xiao, Channel allocation and routing in hybrid multichannel multiradio wireless mesh networks. IEEE Trans. Mobile Comput. 12(2), 206–218 (2013)Google Scholar
  55. 55.
    K.N. Ramachandran, E.M. Belding-Royer, K.C. Almeroth, M.M. Buddhikot, Interference-aware channel assignment in multi-radio wireless mesh networks, in Infocom, vol. 6 (2006), pp. 1–12Google Scholar
  56. 56.
    J. Gummeson, D. Ganesan, M.D. Corner, P. Shenoy, An adaptive link layer for range diversity in multi-radio mobile sensor networks, in INFOCOM 2009, IEEE (IEEE, Piscataway, 2009), pp. 154–162Google Scholar
  57. 57.
    R.S. Sutton, A.G. Barto, Introduction to Reinforcement Learning, 2nd edn. (MIT Press, Cambridge, MA, USA, 2018). isbn:978-0-262-03924-6zbMATHGoogle Scholar
  58. 58.
    P. Kyasanur, N.H. Vaidya, Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 10(1), 31–43 (2006)Google Scholar
  59. 59.
    A.A. Al Islam, M.S. Hossain, V. Raghunathan, Y.C. Hu, Backpacking: deployment of heterogeneous radios in high data rate sensor networks, in 2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN) (IEEE, Piscataway, 2011), pp. 1–8Google Scholar
  60. 60.
    A.A. Al Islam, M.S. Hossain, V. Raghunathan, Y.C. Hu, Backpacking: energy-efficient deployment of heterogeneous radios in multi-radio high-data-rate wireless sensor networks. IEEE Access 2, 1281–1306 (2014)Google Scholar
  61. 61.
    A. Islam, V. Raghunathan, Assessing the viability of cross-layer modeling for asynchronous, multi-hop, ad-hoc wireless mesh networks, in Proceedings of the 9th ACM International Symposium on Mobility Management and Wireless Access (ACM, New York, 2011), pp. 147–152Google Scholar
  62. 62.
    A.A. Al Islam, V. Raghunathan, SiAc: simultaneous activation of heterogeneous radios in high data rate multi-hop wireless networks. Wirel. Netw. 21(7), 2425–2452 (2015)Google Scholar
  63. 63.
    A.A. Al Islam, V. Raghunathan, Symco: symbiotic coexistence of single-hop and multi-hop transmissions in next-generation wireless mesh networks. Wirel. Netw. 21(7), 2115–2136 (2015)Google Scholar
  64. 64.
    K. Li, Q. Liu, F. Wang, X. Xie, Joint optimal congestion control and channel assignment for multi-radio multi-channel wireless networks in cyber-physical systems, in Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, 2009. UIC-ATC’09 (IEEE, Piscataway, 2009), pp. 456–460Google Scholar
  65. 65.
    X. Lin, N.B. Shroff, R. Srikant, A tutorial on cross-layer optimization in wireless networks. IEEE J. Sel. Areas Commun. 24(8), 1452–1463 (2006)Google Scholar
  66. 66.
    J. White, S. Clarke, C. Groba, B. Dougherty, C. Thompson, D.C. Schmidt, R&d challenges and solutions for mobile cyber-physical applications and supporting internet services. J. Internet Serv. Appl. 1(1), 45–56 (2010)Google Scholar
  67. 67.
    M. Conti, S.K. Das, C. Bisdikian, M. Kumar, L.M. Ni, A. Passarella, G. Roussos, G. Tröster, G. Tsudik, F. Zambonelli, Looking ahead in pervasive computing: challenges and opportunities in the era of cyber–physical convergence. Pervasive Mob. Comput. 8(1), 2–21 (2012)Google Scholar
  68. 68.
    X. Hu, T.H. Chu, H.C. Chan, V.C. Leung, Vita: a crowdsensing-oriented mobile cyber-physical system. IEEE Trans. Emerg. Top. Comput. 1(1), 148–165 (2013)Google Scholar
  69. 69.
    R. Baheti, H. Gill, Cyber-physical systems, in The Impact of Control Technology, vol. 12 (2011), pp. 161–166Google Scholar
  70. 70.
    R.R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next computing revolution, in Proceedings of the 47th Design Automation Conference (ACM, New York, 2010), pp. 731–736Google Scholar
  71. 71.
    M. Seyedzadegan, M. Othman, B.M. Ali, S. Subramaniam, Wireless mesh networks: WMN overview, WMN architecture, in International Conference on Communication Engineering and Networks IPCSIT, vol. 19 (2011), p. 2Google Scholar
  72. 72.
    F.-J. Wu, Y.-F. Kao, Y.-C. Tseng, From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7(4), 397–413 (2011)Google Scholar
  73. 73.
    L. Han, S. Potter, G. Beckett, G. Pringle, S. Welch, S.-H. Koo, G. Wickler, A. Usmani, J.L. Torero, A. Tate, FireGrid: an e-infrastructure for next-generation emergency response support. J. Parallel Distrib. Comput. 70(11), 1128–1141 (2010)Google Scholar
  74. 74.
    M.S. Rahman, M. Naznin, Shortening the tour-length of a mobile data collector in the WSN by the method of linear shortcut, in Web Technologies and Applications – 15th Asia-Pacific Web Conference, APWeb 2013, Sydney, April 4–6, 2013. Proceedings (2013), pp. 674–685Google Scholar
  75. 75.
    G. Xing, T. Wang, Z. Xie, W. Jia, Rendezvous planning in wireless sensor networks with mobile elements. IEEE Trans. Mob. Comput. 7(12), 1430–1443 (2008)Google Scholar
  76. 76.
    K. Namuduri, Y. Wan, M. Gomathisankaran, R. Pendse, Airborne network: a cyber-physical system perspective, in Proceedings of the first ACM MobiHoc Workshop on Airborne Networks and Communications (ACM, New York, 2012), pp. 55–60Google Scholar
  77. 77.
    K. Sampigethaya, R. Poovendran, Aviation cyber–physical systems: foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013)Google Scholar
  78. 78.
    G. Ravikiran, S. Singh, Influence of mobility models on the performance of routing protocols in ad-hoc wireless networks, in 2004 IEEE 59th Vehicular Technology Conference, 2004. VTC 2004-Spring, vol. 4 (IEEE, Piscataway, 2004), pp. 2185–2189Google Scholar
  79. 79.
    P. Nain, D. Towsley, B. Liu, Z. Liu, Properties of random direction models, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 3 (IEEE, Piscataway, 2005), pp. 1897–1907Google Scholar
  80. 80.
    C. Bettstetter, H. Hartenstein, X. Pérez-Costa, Stochastic properties of the random waypoint mobility model. Wirel. Netw. 10(5), 555–567 (2004)Google Scholar
  81. 81.
    T. Yang, H. Feng, C. Yang, Z. Sun, R. Deng, Resource allocation in cooperative cognitive radio networks towards maritime cyber physical systems, in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (IEEE, Piscataway, 2016), pp. 1–4Google Scholar
  82. 82.
    C. news, Maritime WiMAX network launched in Singapore (2008). Accessed 24 June 2017
  83. 83.
    P.S. Jirapure, A.V. Vidhate, Survey and analysis of handoff decision strategies for heterogeneous mobile wireless networks. Int. J. 4(4), 703–713 (2014)Google Scholar
  84. 84.
    N. Nurain, T. Akter, H. Zannat, M.M. Akter, A.A. Al Islam, M.H. Kabir, General-purpose multi-objective vertical hand-off mechanism exploiting network dynamics, in 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (IEEE, Piscataway, 2015), pp. 825–832Google Scholar
  85. 85.
    D. Hong, S.S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Trans. Veh. Technol. 35(3), 77–92 (1986)Google Scholar
  86. 86.
    A. Ahmed, L.M. Boulahia, D. Gaiti, Enabling vertical handover decisions in heterogeneous wireless networks: a state-of-the-art and a classification. IEEE Commun. Surv. Tutorials 16(2), 776–811 (2014)Google Scholar
  87. 87.
    Y. Zhou, B. Ai, Handover schemes and algorithms of high-speed mobile environment: a survey. Comput. Commun. 47, 1–15 (2014)Google Scholar
  88. 88.
    K. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn, L. D’arcy, D. Hoffman, M. Makai, J. Stamatakis et al., Scale: safe community awareness and alerting leveraging the internet of things. IEEE Commun. Mag. 53(12), 27–34 (2015)Google Scholar
  89. 89.
    P. Kolodzy et al., Next generation communications: Kickoff meeting, in Proc. DARPA, vol. 10 (2001)Google Scholar
  90. 90.
    G. Staple, K. Werbach, The end of spectrum scarcity [spectrum allocation and utilization]. IEEE Spect. 41(3), 48–52 (2004)Google Scholar
  91. 91.
    C.S. Hyder, A.A. Al Islam, L. Xiao, E. Torng, Interference aware reliable cooperative cognitive networks for real-time applications. IEEE Trans. Cogn. Commun. Netw. 2(1), 53–67 (2016)Google Scholar
  92. 92.
    C.S. Hyder, A.A. Al Islam, L. Xiao, Enhancing reliability of real-time traffic via cooperative scheduling in cognitive radio networks, in 2015 IEEE 23rd International Symposium on Quality of Service (IWQoS) (IEEE, Piscataway, 2015), pp. 249–254Google Scholar
  93. 93.
    S. Haykin, Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)Google Scholar
  94. 94.
    M. Dillinger, K. Madani, N. Alonistioti, Software Defined Radio: Architectures, Systems and Functions (Wiley, Chichester, 2005)Google Scholar
  95. 95.
    J. Mitola, The software radio architecture. IEEE Communications Magazine 33(5), 26–38 (1995)Google Scholar
  96. 96.
    D.B. Rawat, C. Bajracharya, Vehicular cyber physical systems (2016)Google Scholar
  97. 97.
    D.B. Rawat, S. Reddy, N. Sharma, B.B. Bista, S. Shetty, Cloud-assisted GPS-driven dynamic spectrum access in cognitive radio vehicular networks for transportation cyber physical systems, in 2015 IEEE Wireless Communications and Networking Conference (WCNC) (IEEE, Piscataway, 2015), pp. 1942–1947Google Scholar
  98. 98.
    J. Mitola, Cognitive radio for flexible mobile multimedia communications, in 1999 IEEE International Workshop on Mobile Multimedia Communications, 1999 (MoMuC’99) (IEEE, Piscataway, 1999), pp. 3–10Google Scholar
  99. 99.
    I.F. Akyildiz, W.-Y. Lee, M.C. Vuran, S. Mohanty, Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50(13), 2127–2159 (2006)zbMATHGoogle Scholar
  100. 100.
    F. Riaz, M.A. Niazi, Spectrum mobility in cognitive radio-based vehicular cyber physical networks: a fuzzy emotion-inspired scheme, in 2015 13th International Conference on Frontiers of Information Technology (FIT) (IEEE, Piscataway, 2015), pp. 264–270Google Scholar
  101. 101.
    D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen, A survey on platoon-based vehicular cyber-physical systems. IEEE Commun. Surv. Tutorials 18(1), 263–284 (2016)Google Scholar
  102. 102.
    R. Hall, C. Chin, Vehicle sorting for platoon formation: impacts on highway entry and throughput. Transp. Res. C Emerg. Technol. 13(5), 405–420 (2005)Google Scholar
  103. 103.
    P. Kavathekar, Y. Chen, Vehicle platooning: a brief survey and categorization, in ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, New York, 2011), pp. 829–845Google Scholar
  104. 104.
    K. Zhu, D. Niyato, P. Wang, E. Hossain, D. In Kim, Mobility and handoff management in vehicular networks: a survey. Wirel. Commun. Mob. Comput. 11(4), 459–476 (2011)Google Scholar
  105. 105.
    G.I. Tsiropoulos, O.A. Dobre, M.H. Ahmed, K.E. Baddour, Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Commun. Surv. Tutorials 18(1), 824–847 (2016)Google Scholar
  106. 106.
    E.Z. Tragos, S. Zeadally, A.G. Fragkiadakis, V.A. Siris, Spectrum assignment in cognitive radio networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 15(3), 1108–1135 (2013)Google Scholar
  107. 107.
    I.F. Akyildiz, W.-Y. Lee, M.C. Vuran, S. Mohanty, A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 46(4), 40–48 (2008)Google Scholar
  108. 108.
    D.W.K. Ng, E.S. Lo, R. Schober, Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Trans. Veh. Technol. 65(5), 3166–3184 (2016)Google Scholar
  109. 109.
    L. Lyu, C. Chen, Y. Li, F. Lin, L. Liu, X. Guan, Cognitive radio enabled transmission for state estimation in industrial cyber-physical systems, in 2015 IEEE Global Communications Conference (GLOBECOM) (IEEE, Piscataway, 2015), pp. 1–6Google Scholar
  110. 110.
    X. Cao, P. Cheng, J. Chen, S.S. Ge, Y. Cheng, Y. Sun, Cognitive radio based state estimation in cyber-physical systems. IEEE J. Sel. Areas Commun. 32(3), 489–502 (2014)Google Scholar
  111. 111.
    Y.-C. Liang, Y. Zeng, E.C. Peh, A.T. Hoang, Sensing-throughput tradeoff for cognitive radio networks. IEEE Trans. Wirel. Commun. 7(4), 1326–1337 (2008)Google Scholar
  112. 112.
    T.A. Khan, C.S. Hyder, A.A. Al Islam, Towards exploiting a synergy between cognitive and multi-radio networking, in 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (IEEE, Piscataway, 2015), pp. 370–377Google Scholar
  113. 113.
    P. Mell, T. Grance, Draft NIST working definition of cloud computing-v15, 21. Aug 2009, vol. 2, pp. 123–135 (2009)Google Scholar
  114. 114.
    T. Dillon, C. Wu, E. Chang, Cloud computing: issues and challenges, in 2010 24th IEEE International Conference on Advanced Information Networking and Applications (AINA) (IEEE, Piscataway, 2010), pp. 27–33Google Scholar
  115. 115.
    C. Zou, J. Wan, M. Chen, D. Li, Simulation modeling of cyber-physical systems exemplified by unmanned vehicles with WSNs navigation, in Embedded and Multimedia Computing Technology and Service (Springer, Dordrecht, 2012), pp. 269–275Google Scholar
  116. 116.
    X. Li, C. Qiao, X. Yu, A. Wagh, R. Sudhaakar, S. Addepalli, Toward effective service scheduling for human drivers in vehicular cyber-physical systems. IEEE Trans. Parallel Distrib. Syst. 23(9), 1775–1789 (2012)Google Scholar
  117. 117.
    J. Wan, M. Chen, F. Xia, L. Di, K. Zhou, From machine-to-machine communications towards cyber-physical systems. Comput. Sci. Inf. Syst. 10(3), 1105–1128 (2013)Google Scholar
  118. 118.
    J. Wan, D. Zhang, Y. Sun, K. Lin, C. Zou, H. Cai, VCMIA: a novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mobile Netw. Appl. 19(2), 153–160 (2014)Google Scholar
  119. 119.
    J. Wan, D. Zhang, S. Zhao, L. Yang, J. Lloret, Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Commun. Mag. 52(8), 106–113 (2014)Google Scholar
  120. 120.
    A. Rakotonirainy, Design of context-aware systems for vehicle using complex systems paradigms (2005)Google Scholar
  121. 121.
    S. Al-Sultan, A.H. Al-Bayatti, H. Zedan, Context-aware driver behavior detection system in intelligent transportation systems. IEEE Trans. Veh. Technol. 62(9), 4264–4275 (2013)Google Scholar
  122. 122.
    J. Santa, A.F. Gomez-Skarmeta, Sharing context-aware road and safety information. IEEE Pervasive Comput. 8(3), 58–65 (2009)Google Scholar
  123. 123.
    K.K. Venkatasubramanian, S. Nabar, S.K. Gupta, R. Poovendran, Cyber physical security solutions for pervasive health monitoring systems, in User-Driven Healthcare: Concepts, Methodologies, Tools, and Applications (IGI Global, Hershey, 2013), pp. 447–465Google Scholar
  124. 124.
    M. Bouet, A.L. Dos Santos, RFID tags: positioning principles and localization techniques, in Wireless Days, 2008. WD’08. 1st IFIP (IEEE, Piscataway, 2008), pp. 1–5Google Scholar
  125. 125.
    Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016)Google Scholar
  126. 126.
    T. Shah, A. Yavari, S.S. Karan Mitra, P.P. Jayaraman, F. Rabhi, R. Ranjan, Remote health care cyber-physical system: quality of service (QoS) challenges and opportunities. IET Cyber-Phys. Syst. Theory Appl. 1(1), 40–48 (2016)Google Scholar
  127. 127.
    M. Chen, Y. Ma, Y. Li, D. Wu, Y. Zhang, C.-H. Youn, Wearable 2.0: enabling human-cloud integration in next generation healthcare systems. IEEE Commun. Mag. 55(1), 54–61 (2017)Google Scholar
  128. 128.
    M.S. Hossain, M.A. Rahman, G. Muhammad, Cyber–physical cloud-oriented multi-sensory smart home framework for elderly people: an energy efficiency perspective. J. Parallel Distrib. Comput. 103, 11–21 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Taslim Arefin Khan
    • 1
  • Suraiya Tairin
    • 1
  • Mahmuda Naznin
    • 1
  • Md Zakirul Alam Bhuyian
    • 2
  • A.  B.  M. Alim Al Islam
    • 1
  1. 1.Department of CSEBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of Computer and Information SciencesFordham UniversityBronxUSA

Personalised recommendations