Advertisement

Cyber-Physical Systems: An Overview

  • Bei Yu
  • Junlong ZhouEmail author
  • Shiyan Hu
Chapter
  • 38 Downloads

Abstract

Cyber-physical system (CPS) is an interdisciplinary research field that features systematic integrations of computation, communication, and control of physical processes. It is characterized by the deep complex intertwining process among the embedded cyber components and the dynamic physical components that involve mechanical components, human activities and surrounding environment. CPS spans a rich application domains such as electric vehicle, smart grid, healthcare and medicine, smart home, smart building and community, and smart manufacturing. The design and management of CPS pose significant challenges in multiple aspects of quality of service (QoS), including reliability, security, sustainability, and scalability. In this chapter, we will give a high level review of typical CPS applications, and discuss state-of-the-art works and design methodologies dedicated to improving reliability and security of CPS.

Keywords

Cyber-physical system Application Quality of service Methodologies and domains 

References

  1. 1.
    Q. Zhu, A. Sangiovanni-Vincentelli, S. Hu, X. Li, Design automation for cyber-physical systems. Proc. IEEE 106(9), 1479–1483 (2018)CrossRefGoogle Scholar
  2. 2.
    V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, G.P. Hancke, Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inf. (TII) 7(4), 529–539 (2011)Google Scholar
  3. 3.
    Y. Liu, S. Hu, H. Huang, R. Ranjan, A. Zomaya, L. Wang, Game theoretic market driven smart home scheduling considering energy balancing. IEEE Syst. J. (ISJ) 11(2), 910–921 (2017)Google Scholar
  4. 4.
    N. Komninos, E. Philippou, A. Pitsillides, Survey in smart grid and smart home security: issues, challenges and countermeasures. IEEE Commun. Surv. Tutorials (CMOST) 16(4), 1933–1954 (2014)Google Scholar
  5. 5.
    P. Cong, L. Li, J. Zhou, K. Cao, T. Wei, M. Chen, S. Hu, Developing user perceived value based pricing models for cloud markets. IEEE Trans. Parallel Distrib. Syst. (TPDS) 29(4), 2742–2756 (2018)Google Scholar
  6. 6.
    T. Wang, J. Zhou, G. Zhang, T. Wei, S. Hu, Customer perceived value- and risk-aware multiserver configuration for profit maximization. IEEE Trans. Parallel Distrib. Syst. (TPDS) 31(5), 1074–1088 (2020)Google Scholar
  7. 7.
    B. Zheng, P. Deng, R. Anguluri, Q. Zhu, F. Pasqualetti, Cross-layer codesign for secure cyber-physical systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 35(5), 699–711 (2016)Google Scholar
  8. 8.
    J. Kleissl, Y. Agarwal, Cyber-physical energy systems: focus on smart buildings, in Proceedings of ACM/IEEE Design Automation Conference (DAC) (ACM, New York, 2010), pp. 749–754Google Scholar
  9. 9.
    X. Chen, X. Li, S. X.-D. Tan, From robust chip to smart building: CAD algorithms and methodologies for uncertainty analysis of building performance, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 457–464 (2015)Google Scholar
  10. 10.
    B. Lin, B. Yu, Smart building uncertainty analysis via adaptive lasso. IET Cyber-Phys. Syst. Theory Appl. 2(1), 42–48 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Wei, X. Chen, X. Li, Q. Zhu, Model-based and data-driven approaches for building automation and control, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (ACM, New York, 2018), p. 26Google Scholar
  12. 12.
    M.B. Alawieh, X. Tang, D.Z. Pan, S 2-PM: semi-supervised learning for efficient performance modeling of analog and mixed signal circuits, in Proceedings of IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC) (ACM, New York, 2019), pp. 268–273Google Scholar
  13. 13.
    W. Shan, X. Liu, M. Lu, L. Wan, J. Yang, A low-overhead timing monitoring technique for variation-tolerant near-threshold digital integrated circuits. IEEE Access 6, 138–145 (2018)CrossRefGoogle Scholar
  14. 14.
    R. Rajkumar, I. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next computing revolution, in Proceedings of ACM/IEEE Design Automation Conference (DAC) (IEEE, Piscataway, 2010), pp. 731–736Google Scholar
  15. 15.
    A. Baronchelli, R. Ferrer-i Cancho, R. Pastor-Satorras, N. Chater, M.H. Christiansen, Networks in cognitive science. Trends Cogn. Sci. 17(7), 348–360 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Peeling, D. Mabey, Point-of-care tests for diagnosing infections in the developing world. Clin. Microbiol. Infect. 16(8), 1062–1069 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Luo, K. Chakrabarty, T.-Y. Ho, Dictionary-based error recovery in cyberphysical digital-microfluidic biochips, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (ACM, New York, 2012), pp. 369–376Google Scholar
  18. 18.
    C.H. Ahn, J.-W. Choi, G. Beaucage, J.H. Nevin, J.-B. Lee, A. Puntambekar, J.Y. Lee, Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE 92(1), 154–173 (2004)CrossRefGoogle Scholar
  19. 19.
    L. Wu, G. Kaiser, An autonomic reliability improvement system for cyber-physical systems, in Proceedings of IEEE International Symposium on High-Assurance Systems Engineering (HASE), pp. 56–61 (2012)Google Scholar
  20. 20.
    K. Cao, G. Xu, J. Zhou, M. Chen, T. Wei, K. Li, Lifetime-aware real-time task scheduling on fault-tolerant mixed-criticality embedded systems. Futur. Gener. Comput. Syst. (FGCS) 100, 165–175 (2019)CrossRefGoogle Scholar
  21. 21.
    K. Cao, J. Zhou, P. Cong, L. Li, T. Wei, M. Chen, S. Hu, X. Hu, Affinity-driven modeling and scheduling for makespan optimization in heterogeneous multiprocessor systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 38(7), 1189–1202 (2019)Google Scholar
  22. 22.
    K. Cao, J. Zhou, T. Wei, M. Chen, S. Hu, K. Li, A survey of optimization techniques for thermal-aware 3D processors. J. Syst. Archit. (JSA) 97, 397–415 (2019)CrossRefGoogle Scholar
  23. 23.
    J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan, Y. Ma, Reliability and temperature constrained task scheduling for makespan minimization on heterogeneous multi-core platforms. J. Syst. Softw. (JSA) 133, 1–16 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Zhou, K. Cao, J. Sun, Y. Zhang, T. Wei, A framework to solve the energy, makespan and lifetime problems in reliability-driven task scheduling, in Proceedings of IEEE Cyber, Physical and Social Computing (CPSCom) (IEEE, Piscataway, 2019), pp. 608–614Google Scholar
  25. 25.
    M. Haque, H. Aydin, D. Zhu, On reliability management of energy-aware real-time systems through task replication. IEEE Trans. Parallel Distrib. Syst. (TPDS) 28(3), 813–825 (2017)Google Scholar
  26. 26.
    L. Li, P. Cong, K. Cao, J. Zhou, T. Wei, M. Chen, Feedback control of real-time EtherCAT networks for reliability enhancement in CPS, in Proceedings of IEEE/ACM Design, Automation and Test in Europe Conference and Exhibition (DATE) (IEEE, Piscataway, 2018), pp. 688–693Google Scholar
  27. 27.
    L. Li, P. Cong, K. Cao, J. Zhou, T. Wei, M. Chen, S. Hu, X. Hu, Game theoretic feedback control for reliability enhancement of EtherCAT-based networked systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 38(9), 1599–1610 (2019)Google Scholar
  28. 28.
    Y. Liu, Y. Zhou, S. Hu, Combating coordinated pricing cyberattack and energy theft in smart home cyber-physical systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 37(3), 573–586 (2018)Google Scholar
  29. 29.
    Q. Zhang, M. Zhang, T. Chen, J. Fan, Z. Yang, G. Li, Electricity theft detection using generative models, in IEEE International Conference on Tools with Artificial Intelligence (ICTAI) (IEEE, Piscataway, 2018), pp. 270–274Google Scholar
  30. 30.
    Y. Liu, S. Hu, Cyberthreat analysis and detection for energy theft in social networking of smart homes. IEEE Trans. Comput. Soc. Syst. (TCSS) 2(4), 148–158 (2015)Google Scholar
  31. 31.
    T. Wei, Z. Qi, M. Maasoumy, Co-scheduling of HVAC control, EV charging and battery usage for building energy efficiency, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (IEEE, Piscataway, 2014), pp. 191–196Google Scholar
  32. 32.
    T. Wei, T. Kim, S. Park, Z. Qi, X.D. Tan, N. Chang, S. Ula, M. Maasoumy, Battery management and application for energy-efficient buildings, in Proceedings of ACM/IEEE Design Automation Conference (DAC) (ACM, New York, 2014), pp. 1–6Google Scholar
  33. 33.
    K. Cao, G. Xu, J. Zhou, T. Wei, M. Chen, S. Hu, QoS-adaptive approximate real-time computation for mobility-aware IoT lifetime optimization. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 38(10), 1799–1810 (2019)Google Scholar
  34. 34.
    K. Cao, J. Zhou, G. Xu, T. Wei, S. Hu, Exploring renewable-adaptive computation offloading for hierarchical QoS optimization in FOG computing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) (2019).  https://doi.org/10.1109/TCAD.2019.2957374
  35. 35.
    Y. Liu, S. Hu, H. Huang, R. Ranjan, A.Y. Zomaya, L. Wang, Game-theoretic market-driven smart home scheduling considering energy balancing. IEEE Syst. J. (ISJ) 11(2), 910–921 (2017)Google Scholar
  36. 36.
    C.W. Lin, B. Zheng, Q. Zhu, A. Sangiovanni-Vincentelli, Security-aware design methodology and optimization for automotive systems. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 21(1), 1–26 (2015)Google Scholar
  37. 37.
    Y. Liu, S. Hu, T.Y. Ho, Leveraging strategic detection techniques for smart home pricing cyberattacks. IEEE Trans. Dependable Secure Comput. (TDSC) 13(2), 220–235 (2016)Google Scholar
  38. 38.
    B. Zheng, D. Peng, R. Anguluri, Z. Qi, F. Pasqualetti, Cross-layer codesign for secure cyber-physical systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (TCAD) 35(5), 699–711 (2016)Google Scholar
  39. 39.
    J. Sztipanovits, T. Bapty, S. Neema, X. Koutsoukos, E. Jackson, Design tool chain for cyber-physical systems: lessons learned, in Proceedings of ACM/IEEE Design Automation Conference (DAC) (ACM, New York, 2015), p. 81Google Scholar
  40. 40.
    P. Nuzzo, A.L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, T. Villa, A platform-based design methodology with contracts and related tools for the design of cyber-physical systems. Proc. IEEE 103(11), 2104–2132 (2015)CrossRefGoogle Scholar
  41. 41.
    M. Maasoumy, Z. Qi, L. Cheng, F. Meggers, A. Vincentelli, Co-design of control algorithm and embedded platform for building HVAC systems, in Proceedings of International Conference on Cyber-Physical Systems (ICCPS) (ACM, New York, 2013), pp. 61–70Google Scholar
  42. 42.
    P. Deng, F. Cremona, Q. Zhu, M. Di Natale, H. Zeng, A model-based synthesis flow for automotive CPS, in Proceedings of International Conference on Cyber-Physical Systems (ICCPS) (ACM, New York, 2015), pp. 198–207Google Scholar
  43. 43.
    X. Chen, X. Li, S.X.-D. Tan, Overview of cyber-physical temperature estimation in smart buildings: from modeling to measurements, in Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (IEEE, Piscataway, 2016), pp. 251–256Google Scholar
  44. 44.
    X. Chen, X. Li, S.X.-D. Tan, From robust chip to smart building: CAD algorithms and methodologies for uncertainty analysis of building performance, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (IEEE Press, Piscataway, 2015), pp. 457–464Google Scholar
  45. 45.
    B. Lin, B. Yu, Smart building uncertainty analysis via adaptive lasso. IET Cyber-Phys. Syst. Theory Appl. 2(1), 42–48 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Sridhar, A. Hahn, M. Govindarasu, Cyber–physical system security for the electric power grid. Proc. IEEE 100(1), 210–224 (2012)CrossRefGoogle Scholar
  47. 47.
    A. Jones, Z. Kong, C. Belta, Anomaly detection in cyber-physical systems: a formal methods approach, in Proceedings of IEEE Conference on Decision and Control (CDC) (IEEE, Piscataway, 2014), pp. 848–853Google Scholar
  48. 48.
    M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, Z. Han, Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. (ISJ) 11(3), 1644–1652 (2017)Google Scholar
  49. 49.
    Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, B. Yu, Recent advances in convolutional neural network acceleration. Neurocomputing 323, 37–51 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringThe Chinese University of Hong KongShatinHong Kong
  2. 2.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  3. 3.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations