Advertisement

Integrated Ecosystem Management for Exploited Coastal Ecosystem Dynamics Under Oligotrophication and Climate Changes

  • Franck LagardeEmail author
  • Marion Richard
  • Valérie Derolez
  • Beatrice Bec
  • Romain Pete
  • Juri Hori
  • Christopher Bayne
  • Serge Mortreux
  • Alana Correia-Martins
  • Réjean Tremblay
  • Masami Hamaguchi
  • Jun Shoji
  • Mitsutaku Makino
  • Masaaki Sato
  • Masahiro Nakaoka
  • Toshihiro Miyajima
  • Stéphane Pouvreau
  • Masakazu HoriEmail author
Conference paper
  • 38 Downloads

Abstract

Global change causes fluctuations as rainfall deficits that in some cases amplifies the reduction in nutrient intakes required for water quality regulation. In this context, oligotrophication reduces the pelagic production of coastal ecosystems and promotes the return of benthic macrophytes such as Zostera meadows. It is now necessary to know and understand the potential benefits related to the return of seagrass beds associated with the environmental recovery of shellfish-exploited-ecosystems (SEE). The French–Japanese SAKURA project aimed to (1) clarify and compare relationships between dynamics of nutrient levels, phytoplankton, and oyster production in the Thau Lagoon (France) and Hiroshima and Aki bays, using historical data analysis and carrying capacity models, (2) highlight the Zostera spp. contribution to oyster life cycles studying the variability of larval recruitment, survival, growth of juveniles, and trophic regime of oysters in the presence or in the absence of Zostera spp. meadows, (3) describe and compare the dynamics of socio-ecosystems of SEE under oligotrophication. First results of the SAKURA project permitted to start to improve knowledge on the influence of oligotrophication processes on the ecological status of shellfish-exploited-ecosystems and on the oyster life cycle. Analysis is still ongoing. Now, the French and Japanese partners want to deepen the interdisciplinary approach and the knowledge of this major sea and coastal challenge by expanding their partnership in the international community to address more holistically the conservation of biodiversity and the sustainable use of resources in the changing coastal seas.

Keywords

Oyster aquaculture Oligotrophication Seagrass Coastal productivity Socio-ecosystem 

Notes

Acknowledgements

The authors thank the researcher’s exchange program of Hubert Curien–SAKURA project (n°38567 YK) from the organizations Campus France (French Foreign Ministry) and JSPS. FL, ACM, and RT thank GDRI RECHAGLO for the exchange between France and Canada. FL thanks the French VELYGER network (Pouvreau et al. 2016) for the financial contribution of the larval part of this work. FL, VD, and MH are grateful to French-Japanese Society of Oceanography for their welcome and the fruitfulness of scientific and friendly exchanges.

References

  1. Bec B, Derolez V, Soudant D, Cesmat L, Pete R, Richard M (2018) Projet CAPATHAU : Capacité Trophique de la lagune de Thau. Livrable I. Evolution temporelle de l’état écologique de la lagune de Thau et des performances des coquillages en élevage au regard de la réduction des apports issus du bassin versant. 157pGoogle Scholar
  2. Collos Y, Bec B, Jauzein C, Abadie E, Laugier T, Lautier J, Pastoureaud A, Souchu P, Vaquer A (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J Sea Res 61:68–75CrossRefGoogle Scholar
  3. Derolez V, Bec B, Munaron D, Fiandrino A, Pete R, Simier M, Souchu P, Laugier T, Aliaume C, Malet N (2019) Recovery trajectories following the reduction of urban nutrient inputs along the eutrophication gradient in French Mediterranean lagoons. Ocean Coast Manage 171:1–10CrossRefGoogle Scholar
  4. Derolez V, Soudant D, Richard M, Lagarde F, Chiantella C, Malet N (2017) Restoration trends of the Thau lagoon’s water ecological status and phytoplankton communities in response to changes in anthropogenic nutrient inputs. Poster. In: COAST Bordeaux 2017 “Evolution systémique et de la biodiversité des environnements côtiers et littoraux sous la pression du changement climatique, des facteurs naturels et anthropiques locaux”. 7 au 10 November 2017, BordeauxGoogle Scholar
  5. Hori M, Hamaoka H, Hirota M, Lagarde F, Vaz S, Hamaguchi M, Hori J, Makino M (2018) Application of the coastal ecosystem complex concept toward integrated management for sustainable coastal fisheries under oligotrophication. Fish Sci 84(2):283.  https://doi.org/10.1007/s12562-017-1173-2CrossRefGoogle Scholar
  6. Kishi MJ, Oshima Y (2008) The role of benthos and epiphyte on the material cycle in Akkeshi Lake, Japan. In: Mohanty PK (ed) Monitoring and modelling lakes and coastal environments. Springer, Netherlands, Dordrecht, pp 151–158CrossRefGoogle Scholar
  7. Lagarde F, Richard M, Bec B, Roques C, Mortreux S, Bernard I, Chiantella C, Messiaen G, Nadalini J-B, Hori M, Hamaguchi M, Pouvreau S, Roque d’Orbcastel E, Tremblay R (2018) Trophic environments influence size at metamorphosis and recruitment performance of the Pacific oyster. Mar Ecol Prog Ser 602:135–153CrossRefGoogle Scholar
  8. Lagarde F, Roque E, Ubertini M, Mortreux S, Bernard I, Fiandrino A, Chiantella C, Bec B, Roques C, Bonnet D, Miron G, Richard M, Pouvreau S, Lett C (2017) Recruitment of the Pacific oyster Crassostrea gigas in a shellfish-exploited Mediterranean lagoon: discovery, driving factors and a favorable environmental window. Mar Ecol Prog Ser 578:1–17CrossRefGoogle Scholar
  9. Lamb JB, Water JAJM Van De, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell CD (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355(80): 731–733Google Scholar
  10. Morimoto N, Umezawa Y, San Diego-McGlone ML, Watanabe A, Siringan FP, Tanaka Y, Regino GL, Miyajima T (2017) Spatial dietary shift in bivalves from embayment with river discharge and mariculture activities to outer seagrass beds in northwestern Philippines. Mar Biol 164:1–16CrossRefGoogle Scholar
  11. Pete R, Guyondet T, Cesmat L, Fiandrino A, Bec B, Richard M (2018a) Projet CAPATHAU : CAPAcité trophique de la lagune de THAU. Livrable 2. Description et évaluation du modèle GAMELag-Conch : modèle d’écosystème lagunaire exploité par la conchyliculture, adapté à la lagune de Thau. 48pGoogle Scholar
  12. Pete R, Richard M, Guyondet T, Cesmat L, Derolez V (2018b) Projet CAPATHAU : CAPAcité trophique de la lagune de THAU. Livrable 3 – Évaluation de la capacité de charge écosystémique de la lagune de Thau : Modélisation de scenarios de gestion. 39 pGoogle Scholar
  13. Pouvreau S, Maurer D, Auby I, Lagarde F, Gall P Le, Cochet H, Bouquet A-L, Geay A, Mille D (2016) VELYGER database: the oyster larvae monitoring French Project. http://doi.org/10.17882/41888
  14. Tsurita I, Hori M, Makino M (2017) Fishermen and conservation: sharing the case study of Hinase Bay, Japan. In: Westlund L (ed) Marine protected areas : interactions with fishery livelihoods and food security, pp 43–50Google Scholar
  15. Yanagi T (2015) Estuaries of the world, eutrophication and oligotrophication in Japanese estuaries. The present and future tasks. Springer, Kobe, JapanCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Franck Lagarde
    • 1
    Email author
  • Marion Richard
    • 1
  • Valérie Derolez
    • 1
  • Beatrice Bec
    • 3
  • Romain Pete
    • 3
  • Juri Hori
    • 6
  • Christopher Bayne
    • 2
  • Serge Mortreux
    • 1
  • Alana Correia-Martins
    • 5
  • Réjean Tremblay
    • 5
  • Masami Hamaguchi
    • 2
  • Jun Shoji
    • 9
  • Mitsutaku Makino
    • 6
  • Masaaki Sato
    • 7
  • Masahiro Nakaoka
    • 8
  • Toshihiro Miyajima
    • 9
  • Stéphane Pouvreau
    • 4
  • Masakazu Hori
    • 2
    Email author
  1. 1.MARBEC, Univ Montpellier, IRD, CNRSIfremerSeteFrance
  2. 2.NRIFEIS, Japan Fisheries Research and Education Agency (FRA)HiroshimaJapan
  3. 3.MARBEC, Univ Montpellier, IRD, CNRSIfremerMontpellierFrance
  4. 4.Ifremer, Laboratoire des Sciences de l’Environnement Marin (LEMAR)Argenton-en-LandunvezFrance
  5. 5.ISMER/Université du Québec a RimouskiRimouskiCanada
  6. 6.National Research Institute of Fisheries Science FRAYokohamaJapan
  7. 7.National Research Institute of Fisheries Engineering FRAIbarakiJapan
  8. 8.Field Science Center for Northern BiosphereHokkaido UniversityAkkeshiJapan
  9. 9.Atmosphere and Ocean Research Institute, The University of TokyoChibaJapan

Personalised recommendations