Advertisement

Applications of Nitrile Imine Derivatives

  • Craig JamiesonEmail author
  • Keith Livingstone
Chapter
  • 22 Downloads

Abstract

Nitrile imines have been employed in a diverse range of fields relating to the chemical sciences. This likely originates from the pleiotropic reactivity of the dipole, coupled with the diverse range of methods available for their generation. The overwhelming majority of these applications utilise the facile and often orthogonal 1,3-dipolar cycloaddition between nitrile imines and electronically- or strain-activated alkenes. More recent reports have also explored the introduction of hydrazide synthesis through the combination of the dipole with carboxylic acids. In addition to the adaption of nitrile imines within traditional chemical synthesis, the dipole has also demonstrated widespread application in both bioorthogonal chemistry and materials science as a ligation agent.

Keywords

Nitrile imine 1,3-dipole Applications Synthesis 1,3-dipolar cycloaddition Photoclick Bioorthogonal chemistry Materials Surface chemistry Polymer chemistry 

References

  1. 1.
    Shawali AS (1993) Reactions of heterocyclic compounds with Nitrilimines and their precursors. Chem Rev 93:2731–2777CrossRefGoogle Scholar
  2. 2.
    Sami Shawali A, Osman Abdelhamid A (2012) Synthesis of Spiro-heterocycles via 1,3-dipolar cycloadditions of Nitrilimines to Exoheterocyclic enones. Site-, Regio- and stereo-selectivities overview. Curr Org Chem 16:2673–2689CrossRefGoogle Scholar
  3. 3.
    Shawali AS (2014) Chemoselectivity in 1,3-dipolar cycloaddition reactions of Nitrilimines with multifunctionalized dipolarophiles. Curr Org Chem 18:598–614Google Scholar
  4. 4.
    Baruah KA, Prajapati D, Sandhu JS (1988) Studies in chromone derivatives: cycloaddition reactions of 4-oxo 4H-1-Benzopyran-3-Carboxaldehyde Imines with Benzonitrile Oxide and Nitrilimine of 4-Oxo-4H-1-Benzopyran-3-Carboxaldehyde with Alkenes. Tetrahedron 44:1241–1246CrossRefGoogle Scholar
  5. 5.
    Blake AJ, Cook TA, Forsyth AC, Gould RO, Paton RM (1992) 1,3-dipolar cycloaddition reactions of Levoglucosenone. Tetrahedron 48:8053–8064CrossRefGoogle Scholar
  6. 6.
    Alizadeh A, Amir Ashjaee Asalemi K, Halvagar M (2019) Intramolecular Diels–Alder and [3+2] cycloaddition reactions in the one-pot synthesis of Epoxypyrrolo[3,4-g]indazoles. Synthesis (Stuttg)Google Scholar
  7. 7.
    Green B, Sheu K (1994) Synthesis of steroidal D-Ring fused pyrazolines: study of regiochemistry of addition. Steroids 59:479–484CrossRefGoogle Scholar
  8. 8.
    Mernyák E, Kozma E, Hetényi A, Márk L, Schneidera G, Wölfling J (2009) Stereoselective synthesis of spiro and condensed Pyrazolines of steroidal α, β-unsaturated Ketones and Nitrilimines by 1,3-dipolar cycloaddition. Steroids 74:520–525CrossRefGoogle Scholar
  9. 9.
    Bach KK, El-Seedi HR, Jensen HM, Nielsen HB, Thomsen I, Torssell KBG (1994) 1,3-Dipolar Cycloadditions of Ethoxycarbonyl-Nitrile Benzylimine, EtOOCC=N+ − N- –CH2C6H5, and synthesis of β-Amino acids. Synthesis and reactions of Ethyl 2-Chloro-2-ethoxyacetate and 2-Chloro-2-Ethoxyacetyl Chloride. Tetrahedron 50:7543–7556CrossRefGoogle Scholar
  10. 10.
    Wang Y, Lin Q (2009) Synthesis and evaluation of photoreactive tetrazole amino acids. Org Lett 11:3570–3573CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pla D, Tan DS, Gin DY (2014) 5-(Methylthio)tetrazoles as versatile Synthons in the stereoselective synthesis of polycyclic Pyrazolines via photoinduced intramolecular Nitrile Imine-Alkene 1,3-dipolar cycloaddition. Chem Sci 5:2407–2415CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Adelstein GW (1973) Antiarrhythmic agents. Synthesis and biological activity of some Tetrazole and Oxadiazole analogs of 4-Dialkylamino-2,2-Diarylbutyramides. J Med Chem 16:309–312CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Garofalo AW, Jagodzinski JJ, Konradi AW, Ng RA, Semko CM, Sham HL, Sun M, Ye XM, Garofalo AW, Jagodzinski JJ, Konradi AW, Ng RA, Semko CM, Sham HL, Sun M, Ye XM (2012) Synthesis of Novel Tetrahydro-1H-pyrazolo[4,3-c]pyridines via intramolecular Nitrilimine cycloaddition. Chem Pharm Bull 60:1063–1066CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pinto DJP, Orwat MJ, Koch S, Rossi KA, Alexander Richard S, Smallwood A, Wong PC, Rendina AR, Luettgen JM, Knabb RM, He K, Xin B, Wexler RR, Lam PYS (2007) Discovery of 1-(4-Methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation F. J Med Chem 50:5339–5356CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Conti P, di Ventimiglia SJ, Pinto A, Tamborini L, Menniti FS, Lazzaro JT, De Micheli C (2008) Synthesis of Novel Pyrrolo[3,4-d]pyrazole-dicarboxylic acids and evaluation of their interaction with glutamate receptors. Chem Biodivers 5:657–663CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pfefferkorn JA, Choi C, Larsen SD, Auerbach B, Hutchings R, Park W, Askew V, Dillon L, Hanselman JC, Lin Z, Lu GH, Robertson A, Sekerke C, Harris MS, Pavlovsky A, Bainbridge G, Caspers N, Kowala M, Tait BD (2008) Substituted Pyrazoles as Hepatoselective HMG-CoA reductase inhibitors: discovery of (3R,5R)-7-[2-(4-Fluoro-phenyl)-4-isopropyl-5-(4-methyl-benzylcarbamoyl)-2H-pyrazol-3-yl]-3,5-dihydroxyheptanoic acid (PF-3052334) as a candidate for the treatment of hypercholesterolemia. J Med Chem 51:31–34CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bertuzzi G, Locatelli E, Colecchia D, Calandro P, Bonini BF, Chandanshive JZ, Mazzanti A, Zani P, Chiariello M, Comes Franchini M (2016) Straightforward synthesis of a novel ring-fused Pyrazole-Lactam and in vitro cytotoxic activity on cancer cell lines. Eur J Med Chem 117:1–7CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Silvestri R, Cascio MG, La Regina G, Piscitelli F, Lavecchia A, Brizzi A, Pasquini S, Botta M, Novellino E, Di Marzo V, Corelli F (2008) Synthesis, Cannabinoid receptor affinity, and molecular modeling studies of substituted 1-Aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides. J Med Chem 51:1560–1576CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Donohue SR, Halldin C, Pike VW (2008) A facile and regioselective synthesis of Rimonabant through an Enamine-directed 1,3-dipolar cycloaddition. Tetrahedron Lett 49:2789–2791CrossRefGoogle Scholar
  20. 20.
    Oh LM (2006) Synthesis of celecoxib via 1,3-dipolar cycloaddition. Tetrahedron Lett 47:7943–7946CrossRefGoogle Scholar
  21. 21.
    Oh LM, Wang H, Shilcrat SC, Herrmann RE, Patience DB, Spoors PG, Sisko J (2007) Development of a scalable synthesis of GSK183390A, a PPAR α/γ Agonist. Org Process Res Dev 11:1032–1042CrossRefGoogle Scholar
  22. 22.
    Tamborini L, Chen Y, Foss CA, Pinto A, Horti AG, Traynelis SF, De Micheli C, Mease RC, Hansen KB, Conti P, Pomper MG (2016) Development of radiolabeled ligands targeting the glutamate binding site of the N-Methyl-d-aspartate receptor as potential imaging agents for brain. J Med Chem 59:11110–11119CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tóth M, Kun S, Bokor É, Benltifa M, Tallec G, Vidal S, Docsa T, Gergely P, Somsák L, Praly J-P (2009) Synthesis and structure-activity relationships of C-glycosylated oxadiazoles as inhibitors of glycogen phosphorylase. Bioorg Med Chem 17:4773–4785CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Donohue AC, Pallich S, McCarthy TD (2001) Cycloaddition of nitrile imines to resin-bound Enamines: a solid phase synthesis of 1,4-Diarylpyrazoles. J Chem Soc Perkin Trans 1:2817–2822CrossRefGoogle Scholar
  25. 25.
    Manyem S, Sibi MP, Lushington GH, Neuenswander B, Schoenen F, Aubé J (2006) Solution-phase parallel synthesis of a library of Δ2-Pyrazolines. J Comb Chem 9:20–28CrossRefGoogle Scholar
  26. 26.
    Garanti L, Molteni G, Casati P (2002) Nitrilimine cycloadditions to MeOPEG-bounded alkenyl dipolarophiles. J Chem Soc Perkin Trans 1:2504–2508CrossRefGoogle Scholar
  27. 27.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chemie Int Ed 40:2004–2021CrossRefGoogle Scholar
  28. 28.
    Lim RKV, Lin Q (2010) Bioorthogonal chemistry: recent progress and future directions. Chem Commun 46:1589CrossRefGoogle Scholar
  29. 29.
    Lim RKV, Lin Q (2011) Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Acc Chem Res 44:828–839CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ramil CP, Lin Q (2014) Photoclick chemistry: a fluorogenic light-triggered in vivo ligation reaction. Curr Opin Chem Biol 21:89–95CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Herner A, Lin Q (2016) Photo-triggered click chemistry for biological applications. Top Curr Chem 374:1CrossRefGoogle Scholar
  32. 32.
    Song W, Wang Y, Qu J, Lin Q (2008) Selective functionalization of a genetically encoded alkene-containing protein via “Photoclick Chemistry” in bacterial cells. J Am Chem Soc 130:9654–9655CrossRefGoogle Scholar
  33. 33.
    Csongár C, Weinberg P, Slezak H, Tomaschewski G (1988) Photochemistry of Arylsubstituted 2H-Tetrazoles X. Sulfonated 2,5-Diaryl-2H-tetrazoles. J für Prakt Chemie 330:629–633CrossRefGoogle Scholar
  34. 34.
    Molteni G, Orlandi M, Broggini G (2000) Nitrilimine cycloadditions in aqueous media. J Chem Soc Perkin Trans 1:3742–3745CrossRefGoogle Scholar
  35. 35.
    Song W, Wang Y, Qu J, Madden MM, Lin Q (2008) A Photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew Chemie Int Ed 47:2832–2835CrossRefGoogle Scholar
  36. 36.
    Wang Y, Song W, Hu WJ, Lin Q (2009) Fast alkene functionalization in vivo by photoclick chemistry: HOMO lifting of Nitrile Imine dipoles. Angew Chem Int Ed Engl 48:5330–5333CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang J, Zhang W, Song W, Wang Y, Yu Z, Li J, Wu M, Wang L, Zang J, Lin Q (2010) A biosynthetic route to photoclick chemistry on proteins. J Am Chem Soc 132:14812–14818CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee Y-J, Wu B, Raymond JE, Zeng Y, Fang X, Wooley KL, Liu WR (2013) A genetically encoded acrylamide functionality. ACS Chem Biol 8:1664–1670CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yu Z, Lin Q (2014) Design of Spiro[2.3]hex-1-ene, a genetically encodable double-strained alkene for superfast photoclick chemistry. J Am Chem Soc 136:4153–4156CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Song W, Wang Y, Yu Z, Vera CIR, Qu J, Lin Q (2010) A metabolic alkene reporter for spatiotemporally controlled imaging of newly synthesized proteins in mammalian cells. ACS Chem Biol 5:875–885CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) A genetically encoded Norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chemie Int Ed 51:4466–4469CrossRefGoogle Scholar
  42. 42.
    Yu Z, Pan Y, Wang Z, Wang J, Lin Q (2012) Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chemie Int Ed 51:10600–10604CrossRefGoogle Scholar
  43. 43.
    An P, Wu H-Y, Lewandowski TM, Lin Q (2018) Hydrophilic azaspiroalkenes as robust bioorthogonal reporters. Chem Commun 54:14005–14008CrossRefGoogle Scholar
  44. 44.
    Zhang L, Zhang X, Yao Z, Jiang S, Deng J, Li B, Yu Z (2018) Discovery of fluorogenic diarylsydnone-alkene photoligation: conversion of ortho-dual-twisted diarylsydnones into planar pyrazolines. J Am Chem Soc 140:7390–7394CrossRefGoogle Scholar
  45. 45.
    Zhang X, Wu X, Jiang S, Gao J, Yao Z, Deng J, Zhang L, Yu Z (2019) Photo-accelerated “Click” reaction between Diarylsydnones and ring-strained alkynes for bioorthogonal ligation. Chem Commun 55:7187–7190CrossRefGoogle Scholar
  46. 46.
    Kamber DN, Nazarova LA, Liang Y, Lopez SA, Patterson DM, Shih H-W, Houk KN, Prescher JA (2013) Isomeric cyclopropenes exhibit unique bioorthogonal reactivities. J Am Chem Soc 135:13680–13683CrossRefGoogle Scholar
  47. 47.
    Wang Y, Hu WJ, Song W, Lim RKV, Lin Q (2008) Discovery of long-wavelength photoactivatable diaryltetrazoles for bioorthogonal 1,3-dipolar cycloaddition reactions. Org Lett 10:3725–3728PubMedPubMedCentralGoogle Scholar
  48. 48.
    An P, Yu Z, Lin Q (2013) Design and synthesis of laser-activatable tetrazoles for a fast and fluorogenic red-emitting 1,3-dipolar cycloaddition reaction. Org Lett 15:5496–5499CrossRefGoogle Scholar
  49. 49.
    An P, Yu Z, Lin Q (2013) Design of Oligothiophene-based tetrazoles for laser-triggered photoclick chemistry in living cells. Chem Commun 49:9920CrossRefGoogle Scholar
  50. 50.
    An P, Lewandowski T, Erbay TG, Liu P, Lin Q (2018) A sterically shielded, stabilized nitrile imine for rapid bioorthogonal protein labeling in live cells. J Am Chem Soc 140:4860–4868CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    An P, Lin Q (2018) Sterically shielded tetrazoles for a fluorogenic photoclick reaction: tuning cycloaddition rate and product fluorescence. Org Biomol Chem 16:5241–5244CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang Y, Liu W, Zhao Z (2013) Nucleophilic trapping Nitrilimine generated by photolysis of diaryltetrazole in aqueous phase. Molecules 19:306–315CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Siti W, Khan AK, de Hoog H-PM, Liedberg B, Nallani M (2015) Photo-induced conjugation of Tetrazoles to modified and native proteins. Org Biomol Chem 13:3202–3206CrossRefGoogle Scholar
  54. 54.
    Li Z, Qian L, Li L, Bernhammer JC, Huynh HV, Lee J-S, Yao SQ (2015) Tetrazole photoclick chemistry: reinvestigating its suitability as a bioorthogonal reaction and potential applications. Angew Chem Int Ed Engl 55:2002–2006CrossRefGoogle Scholar
  55. 55.
    Zhao S, Dai J, Hu M, Liu C, Meng R, Liu X, Wang C, Luo T (2016) Photo-induced coupling reactions of Tetrazoles with carboxylic acids in aqueous solution: application in protein labelling. Chem Commun 52:4702–4705CrossRefGoogle Scholar
  56. 56.
    Herner A, Marjanovic J, Lewandowski TM, Marin V, Patterson M, Miesbauer L, Ready D, Williams J, Vasudevan A, Lin Q (2016) 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification. J Am Chem Soc 138:14609–14615CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tian Y, Jacinto MP, Zeng Y, Yu Z, Qu J, Liu WR, Lin Q (2017) Genetically encoded 2-Aryl-5-carboxytetrazoles for site-selective protein photo-cross-linking. J Am Chem Soc 139:6078–6081CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tian Y, Lin Q (2018) Genetic encoding of 2-Aryl-5-carboxytetrazole-based protein photo-cross-linkers. Chem Commun 54:4449–4452CrossRefGoogle Scholar
  59. 59.
    Li Z, Cheng K, Lee J-S, Yao SQ, Ding K (2017) Tetrazole-based probes for integrated phenotypic screening, affinity-based proteome profiling and sensitive detection of a cancer biomarker. Angew Chemie Int Ed 56:15044–15048CrossRefGoogle Scholar
  60. 60.
    Lau YH, de Andrade P, Wu Y, Spring DR (2015) Peptide stapling techniques based on different macrocyclisation chemistries. Chem Soc Rev 44:91–102CrossRefGoogle Scholar
  61. 61.
    Madden MM, Rivera Vera CI, Song W, Lin Q (2009) Facile synthesis of stapled, structurally reinforced peptide helices via a photoinduced intramolecular 1,3-dipolar cycloaddition reaction. Chem Commun 2009:5588–5590CrossRefGoogle Scholar
  62. 62.
    Madden MM, Muppidi A, Li Z, Li X, Chen J, Lin Q (2011) Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett 21:1472–1475CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yu Z, Ho LY, Lin Q (2011) Rapid, photoactivatable turn-on fluorescent probes based on an intramolecular photoclick reaction. J Am Chem Soc 133:11912–11915CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zengeya TT, Garlick JM, Kulkarni RA, Miley M, Roberts AM, Yang Y, Crooks DR, Sourbier C, Linehan WM, Meier JL (2016) Co-opting a bioorthogonal reaction for oncometabolite detection. J Am Chem Soc 138:15813–15816CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kulkarni RA, Briney CA, Crooks DR, Bergholtz SE, Mushti C, Lockett SJ, Lane AN, Fan TW‐M, Swenson RE, Marston Linehan W, Meier JL (2019) Photoinducible oncometabolite detection. ChemBioChem 20:360–365Google Scholar
  66. 66.
    An P, Lewandowski TM, Lin Q (2018) Design and synthesis of a BODIPY-tetrazole based “Off-On” in-cell fluorescence reporter of hydrogen peroxide. ChemBioChem 19:1326–1333CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Schart VF, Hassenrück J, Späte A-K, Dold JEGA, Fahrner R, Wittmann V (2019) Triple orthogonal labeling of glycans by applying photoclick chemistry. ChemBioChem 20:166–171CrossRefGoogle Scholar
  68. 68.
    Song W, Yu Z, Madden MM, Lin Q (2010) A bioorthogonal chemistry strategy for probing protein lipidation in live cells. Mol BioSyst 6:1576CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Stille JK, Harris FW (1966) Polymers from 1,3-dipole addition reactions: the Nitrilimine dipole. J Polym Sci Part B Polym Lett 4:333–336CrossRefGoogle Scholar
  70. 70.
    Iwakura Y, Shiraishi S, Akiyama M (1966) Polymerizations by 1,3-dipolar cycloaddition reactions. IV. N, N′-Diphenylterephthalonitrilimine. Die Makromol Chemie 97:278–281CrossRefGoogle Scholar
  71. 71.
    Stille JK, Gotter LD (1968) Polymers from 1,3-dipole addition reactions: a Bis nitrilimine dipole from a Bis tetrazole precursor. J Polym Sci Part B Polym Lett 6:11–14CrossRefGoogle Scholar
  72. 72.
    Stille JK, Harris FW (1968) Polymers from 1,3-dipole addition reactions: the Nitrilimine dipole from acid hydrazide chlorides. J Polym Sci Part A-1 Polym Chem 6:2317–2330Google Scholar
  73. 73.
    Estupiñán D, Gegenhuber T, Blinco JP, Barner-Kowollik C, Barner L (2017) Self-reporting fluorescent step-growth RAFT polymers based on nitrile imine-mediated tetrazole-ene cycloaddition chemistry. ACS Macro Lett 6:229–234CrossRefGoogle Scholar
  74. 74.
    Sayed AR, Wiggins JS (2008) 1,3-dipolar cycloaddition polymerization reactions of novel macromolecules containing Sym-tetrazine rings. Polymer (Guildf) 49:2253–2259CrossRefGoogle Scholar
  75. 75.
    Sayed AR, Wiggins JS (2011) Alternating copolymer of pyridine and 1,4-diphenyl-1,2,4,5-Tetrazine from Bis-1,3-dipolar cycloaddition polymerization. J Appl Polym Sci 120:623–630CrossRefGoogle Scholar
  76. 76.
    Stille JK, Gotter LD (1969) 1,3-dipolar addition polymerizations. The synthesis and 1,3-dipolar addition polymerization of dipole-dipolarophile (A-B) monomers containing Tetrazole and vinyl or ethynyl moieties. Macromolecules 2:465–468CrossRefGoogle Scholar
  77. 77.
    Mueller JO, Voll D, Schmidt FG, Delaittre G, Barner-Kowollik C (2014) Fluorescent polymers from non-fluorescent photoreactive monomers. Chem Commun 50:15681–15684CrossRefGoogle Scholar
  78. 78.
    Dürr CJ, Lederhose P, Hlalele L, Abt D, Kaiser A, Brandau S, Barner-Kowollik C (2013) Photo-induced ligation of acrylonitrile-butadiene rubber: selective tetrazole-ene coupling of chain-end-functionalized copolymers of 1,3-butadiene. Macromolecules 46:5915–5923CrossRefGoogle Scholar
  79. 79.
    Hiltebrandt K, Pauloehrl T, Blinco JP, Linkert K, Borner HG, Barner-Kowollik C (2015) λ-orthogonal pericyclic macromolecular photoligation. Angew Chem Int Ed Engl 54:2838–43Google Scholar
  80. 80.
    Rudin A, Choi P, Rudin A, Choi P (2013) Free-radical polymerization, 3rd edn. Academic Press, CambridgeGoogle Scholar
  81. 81.
    Stille JK, Gotter LD (1969) Free-radical polymerization of 2-phenyl-5-(4’-vinyl)phenyltetrazole. Reactivity ratios and Q and e values. Macromolecules 2:468–474CrossRefGoogle Scholar
  82. 82.
    Stille JK, Chen AT (1972) Synthesis and copolymerization of styryl-substituted Tetrazoles. Thermal cross-linking of copolymers containing dipolarophiles and the Tetrazoles as Nitrile Imine dipole precursors. Macromolecules 5:377–384CrossRefGoogle Scholar
  83. 83.
    Darkow R, Yoshikawa M, Kitao T, Tomaschewski G, Schellenberg J (1994) Photomodification of a Poly(acrylonitrile-co-butadiene-co-styrene) containing Diaryltetrazolyl groups. J Polym Sci Part A Polym Chem 32:1657–1664CrossRefGoogle Scholar
  84. 84.
    Darkow R, Hartmann U, Tomaschewski G (1997) Synthesis, photomodification and characterization of homo- and copolymers with 2,5-Bis aryltetrazolyl pendant groups. React Funct Polym 32:195–207CrossRefGoogle Scholar
  85. 85.
    Mueller JO, Guimard NK, Oehlenschlaeger KK, Schmidt FG, Barner-Kowollik C (2014) Sunlight-induced crosslinking of 1,2-Polybutadienes: access to fluorescent polymer networks. Polym Chem 5:1447–1456CrossRefGoogle Scholar
  86. 86.
    Hufendiek A, Carlmark A, Meier MAR, Barner-Kowollik C (2016) Fluorescent covalently cross-linked cellulose networks via light-induced ligation. ACS Macro Lett 5:139–143CrossRefGoogle Scholar
  87. 87.
    Wang C, Zieger MM, Schenzel A, Wegener M, Willenbacher J, Barner-Kowollik C, Bowman CN (2017) Photoinduced Tetrazole-based functionalization of off-stoichiometric clickable microparticles. Adv Funct Mater 27:1605317CrossRefGoogle Scholar
  88. 88.
    Estupiñán D, Barner-Kowollik C, Barner L (2018) Counting the clicks in fluorescent polymer networks. Angew Chemie Int Ed 57:5925–5929CrossRefGoogle Scholar
  89. 89.
    Ouchi M, Badi N, Lutz J-F, Sawamoto M (2011) Single-chain technology using discrete synthetic macromolecules. Nat Chem 3:917–924CrossRefGoogle Scholar
  90. 90.
    Kröger APP, Paulusse JMJ (2018) Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J Control Release 286:326–347CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Willenbacher J, Wuest KNR, Mueller JO, Kaupp M, Wagenknecht H-A, Barner-Kowollik C (2014) Photochemical design of functional fluorescent single-chain nanoparticles. ACS Macro Lett 3:574–579CrossRefGoogle Scholar
  92. 92.
    Offenloch JT, Willenbacher J, Tzvetkova P, Heiler C, Mutlu H, Barner-Kowollik C (2017) Degradable fluorescent single-chain nanoparticles based on metathesis polymers. Chem Commun 53:775–778CrossRefGoogle Scholar
  93. 93.
    Heiler C, Offenloch JT, Blasco E, Barner-Kowollik C (2017) Photochemically induced folding of single chain polymer nanoparticles in water. ACS Macro Lett 6:56–61CrossRefGoogle Scholar
  94. 94.
    Heiler C, Bastian S, Lederhose P, Blinco JP, Blasco E, Barner-Kowollik C (2018) Folding polymer chains with visible light. Chem Commun 54:3476–3479CrossRefGoogle Scholar
  95. 95.
    Nitsche T, Steinkoenig J, De Bruycker K, Bloesser FR, Blanksby SJ, Blinco JP, Barner-Kowollik C (2019) Mapping the compaction of discrete polymer chains by size exclusion chromatography coupled to high-resolution mass spectrometry. Macromolecules 52:2597–2606CrossRefGoogle Scholar
  96. 96.
    Langa F, Oswald F (2006) Pyrazolino [60]fullerenes: synthesis and properties. Comptes Rendus Chim 9:1058–1074CrossRefGoogle Scholar
  97. 97.
    Muthu S, Maruthamuthu P, Ragunathan R, Vasudeva Rao PR, Matthews CK (1994) Reaction of Buckminsterfullerene with 1,3-Diphenylnitrilimine: synthesis of Pyrazoline derivatives of fullerene. Tetrahedron Lett 35:1763–1766CrossRefGoogle Scholar
  98. 98.
    Matsubara Y, Tada H, Nagase S, Yoshida Z (1995) Intramolecular charge transfer interaction in 1,3-Diphenyl-2-pyrazoline ring-fused C60. J Org Chem 60:5372–5373CrossRefGoogle Scholar
  99. 99.
    Matsubara Y, Muraoka H, Tada H, Yoshida Z (1996) Functionalization of C60 with 1,3-Nitrilimine dipole: synthesis of 2-Pyrazoline ring-fused C60 derivatives. Chem Lett 25:373–374CrossRefGoogle Scholar
  100. 100.
    de la Cruz P, Diaz-Ortiz A, Garcia JJ, Gomez-Escalonilla MJ, de la Hoz A, Langa F (1999) Synthesis of new C60-donor dyads by reaction of Pyrazolylhydrazones with [60]fullerene under microwave irradiation. Tetrahedron Lett 40:1587–1590CrossRefGoogle Scholar
  101. 101.
    Reinov MV, Yurovskaya MA, Davydov DV, Streletskii AV (2004) Heterocyclic derivatives of fullerene C60 1. Synthesis of new Fulleropyrazolines by the 1,3-dipolar cycloaddition of Nitrile Imines. Chem Heterocycl Compd 40:188–193CrossRefGoogle Scholar
  102. 102.
    Sugawara Y, Jasinski N, Kaupp M, Welle A, Zydziak N, Blasco E, Barner-Kowollik C (2015) Light-driven Nitrile Imine-mediated Tetrazole–ene cycloaddition as a versatile platform for fullerene conjugation. Chem Commun 51:13000–13003CrossRefGoogle Scholar
  103. 103.
    Delgado JL, de la Cruz P, Lopez-Arza V, Langa F (2004) A ready access to unprecedented N-Anilinopyrazolino[60]fullerenes. Tetrahedron Lett 45:1651–1654CrossRefGoogle Scholar
  104. 104.
    Delgado JL, Cardinali F, Espíldora E, Torres MR, Langa F, Martín N (2008) Oxidation of 3-Alkyl-Substituted 2-Pyrazolino[60]fullerenes: a new formyl-containing building block for fullerene chemistry. Org Lett 10:3705–3708CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Oswald F, El-Khouly ME, Araki Y, Ito O, Langa F (2007) Photophysical properties of the newly synthesized triad based on [70]fullerene studies with laser flash photolysis. J Phys Chem B 111:4335–4341CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Liu B, Cong H, Li X, Yu B, Bao L, Cai W, Xie Y, Lu X (2014) Highly regioselective 1,3-dipolar cycloaddition of diphenylnitrilimine to Sc3 N@/h-C80 affording a very stable, unprecedented pyrazole-ring fused derivative of Endohedral metallofullerenes. Chem Commun 50:12710–12713CrossRefGoogle Scholar
  107. 107.
    Kirner S, Sekita M, Guldi DM (2014) 25th anniversary article: 25 years of fullerene research in electron transfer chemistry. Adv Mater 26:1482–1493CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Guldi DM (2002) Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 31:22–36CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Langa F, de la Cruz P, Delgado JL, Gómez-Escalonilla MJ, González-Cortés A, de la Hoz A, López-Arza V (2002) The importance of the linking bridge in donor–C60 electroactive dyads. New J Chem 26:76–80CrossRefGoogle Scholar
  111. 111.
    Espildora E, Delgado JL, de la Cruz P, de la Hoz A, Lopez-Arza V, Langa F (2002) Synthesis and properties of Pyrazolino[60]fullerene-donor systems. Tetrahedron 58:5821–5826CrossRefGoogle Scholar
  112. 112.
    Oviedo JJ, de la Cruz P, Garin J, Orduna J, Langa F (2005) Ruthenocene as a new donor fragment in [60]fullerene–donor dyads. Tetrahedron Lett 46:4781–4784CrossRefGoogle Scholar
  113. 113.
    Langa F, de la Cruz P, Espíldora E, de la Hoz A, Bourdelande JL, Sánchez L, Martín N (2001) C60-based triads with improved electron-acceptor properties: Pyrazolylpyrazolino[60]fullerenes. J Org Chem 66:5033–5041CrossRefGoogle Scholar
  114. 114.
    Delgado JL, Osuna S, Bouit P-A, Martínez-Alvarez R, Espíldora E, Solà M, Martín N (2009) Competitive retro-cycloaddition reaction in fullerene dimers connected through pyrrolidinopyrazolino rings. J Org Chem 74:8174–8180CrossRefGoogle Scholar
  115. 115.
    Delgado JL, Oswald F, Cardinali F, Langa F, Martín N (2008) On the thermal stability of [60]fullerene cycloadducts: retro-cycloaddition reaction of 2-Pyrazolino[4,5:1,2][60]fullerenes. J Org Chem 73:3184–3188CrossRefGoogle Scholar
  116. 116.
    Kennedy RD, Ayzner AL, Wanger DD, Day CT, Halim M, Khan SI, Tolbert SH, Schwartz BJ, Rubin Y (2008) Self-assembling fullerenes for improved bulk-heterojunction photovoltaic devices. J Am Chem Soc 130:17290–17292CrossRefGoogle Scholar
  117. 117.
    Vorobiev AK, Gazizov RR, Borschevskii AY, Markov VY, Ioutsi VA, Brotsman VA, Sidorov LN (2017) Fullerene as photocatalyst: visible-light induced reaction of perfluorinated α, ω-Diiodoalkanes with C60. J Phys Chem A 121:113–121CrossRefGoogle Scholar
  118. 118.
    Sibley SP, Argentine SM, Francis AH (1992) A photoluminescence study of C60 and C70. Chem Phys Lett 188:187–193CrossRefGoogle Scholar
  119. 119.
    Castro E, Garcia AH, Zavala G, Echegoyen L (2017) Fullerenes in biology and medicine. J Mater Chem B 5:6523–6535CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Delgado Juan L, de la Cruz Pilar, López-Arza V, Langa F, Kimball DB, Haley MM, Araki Y, Ito O (2004) The Isoindazole nucleus as a donor in fullerene-based dyads. Evidence for electron transfer. J Org Chem 69:2661–2668CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Langa F, Gomez-Escalonilla MJ, Diez-Barra E, Garcia-Martinez JC, de la Hoz A, Rodriguez-Lopez J, Gonzalez-Cortes A, Lopez-Arza V (2001) Synthesis, electrochemistry and photophysical properties of phenylenevinylene fullerodendrimers. Tetrahedron Lett 42:3435–3438CrossRefGoogle Scholar
  122. 122.
    Parra V, del Caño T, Gómez-Escalonilla MJ, Langa F, Rodríguez-Méndez ML, De Saja JA (2005) Photophysics, electrochemistry and structure of a Pyrazolino[60]fullerene dendrimer in solid molecular films. Synth Met 148:47–52CrossRefGoogle Scholar
  123. 123.
    Armaroli N, Accorsi G, Gisselbrecht J-P, Gross M, Krasnikov V, Tsamouras D, Hadziioannou G, Gómez-Escalonilla MJ, Langa F, Eckert J-F, Nierengarten J-F (2002) Photoinduced processes in Fullerenopyrrolidine and Fullerenopyrazoline derivatives substituted with an Oligophenylenevinylene Moiety. J Mater Chem 12:2077–2087CrossRefGoogle Scholar
  124. 124.
    Gómez-Escalonilla MJ, Langa F, Rueff JM, Oswald L, Nierengarten JF (2002) Synthesis of Dumbbell-Shaped bis-(pyrazolino[60]fullerene)-oligophenylenevinylene derivatives. Tetrahedron Lett 43:7507–7511CrossRefGoogle Scholar
  125. 125.
    Langa F, Gomez-Escalonilla MJ, Rueff J-M, Figueira Duarte TM, Nierengarten J-F, Palermo V, Samorì P, Rio Y, Accorsi G, Armaroli N (2005) Pyrazolino[60]fullerene-Oligophenylenevinylene Dumbbell-Shaped arrays: synthesis, electrochemistry, photophysics, and self-assembly on surfaces. Chem—A Eur J 11:4405–4415CrossRefGoogle Scholar
  126. 126.
    Wang X, Perzon E, Delgado JL, de la Cruz P, Zhang F, Langa F, Andersson M, Inganäs O (2004) Infrared photocurrent spectral response from plastic solar cell with low-band-gap Polyfluorene and fullerene derivative. Appl Phys Lett 85:5081–5083CrossRefGoogle Scholar
  127. 127.
    Wang X, Perzon E, Oswald F, Langa F, Admassie S, Andersson MR, Inganäs O (2005) Enhanced photocurrent spectral response in low-bandgap polyfluorene and C70-derivative-based solar cells. Adv Funct Mater 15:1665–1670CrossRefGoogle Scholar
  128. 128.
    Sugawara Y, Hiltebrandt K, Blasco E, Barner-Kowollik C (2016) Polymer-fullerene network formation via light-induced crosslinking. Macromol Rapid Commun 37:1466–1471CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Alvaro M, Atienzar P, de la Cruz P, Delgado JL, Garcia H, Langa F (2004) Sidewall functionalization of single-walled carbon nanotubes with nitrile imines. Electron transfer from the substituent to the carbon nanotube. J Phys Chem B 108:12691–12697CrossRefGoogle Scholar
  130. 130.
    Lu X, Tian Feng, Xin Xu, Nanqin Wang A, Zhang Q (2003) A theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n, n) Armchair single-wall carbon nanotubes. J Am Chem Soc 125:10459–10464CrossRefGoogle Scholar
  131. 131.
    Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503CrossRefGoogle Scholar
  132. 132.
    Yang T, Zhao X, Nagase S (2013) 1,3-dipolar cycloadditions of stone-wales defective single-walled carbon nanotubes: a theoretical study. J Comput Chem 34:2223–2232CrossRefGoogle Scholar
  133. 133.
    Ondera TJ, Hamme AT II (2014) A gold nanopopcorn attached single-walled carbon nanotube hybrid for rapid detection and killing of bacteria. J Mater Chem B 2:7534–7543CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Barrejón M, Gómez-Escalonilla MJ, Fierro JLG, Prieto P, Carrillo JR, Rodríguez AM, Abellán G, López-Escalante MC, Gabás M, López-Navarrete JT, Langa F (2016) Modulation of the exfoliated graphene work function through cycloaddition of Nitrile Imines. Phys Chem Chem Phys 18:29582–29590CrossRefGoogle Scholar
  135. 135.
    Delaittre G, Goldmann AS, Mueller JO, Barner-Kowollik C (2015) Efficient photochemical approaches for spatially resolved surface functionalization. Angew Chemie Int Ed 54:11388–11403CrossRefGoogle Scholar
  136. 136.
    de Hoog H-PM, Nallani M, Liedberg B (2012) A facile and fast method for the functionalization of polymersomes by photoinduced cycloaddition chemistry. Polym Chem 3:302–306CrossRefGoogle Scholar
  137. 137.
    Dietrich M, Delaittre G, Blinco JP, Inglis AJ, Bruns M, Barner-Kowollik C (2012) Photoclickable surfaces for profluorescent covalent polymer coatings. Adv Funct Mater 22:304–312CrossRefGoogle Scholar
  138. 138.
    van Dongen SFM, de Hoog H-PM, Peters RJRW, Nallani M, Nolte RJM, van Hest JCM (2009) Biohybrid polymer capsules. Chem Rev 109:6212–6274CrossRefGoogle Scholar
  139. 139.
    Rodriguez-Emmenegger C, Preuss CM, Yameen B, Pop-Georgievski O, Bachmann M, Mueller JO, Bruns M, Goldmann AS, Bastmeyer M, Barner-Kowollik C (2013) Controlled cell adhesion on Poly(dopamine) interfaces photo patterned with non-fouling brushes. Adv Mater 25:6123–6127CrossRefGoogle Scholar
  140. 140.
    Vonhören B, Roling O, Buten C, Körsgen M, Arlinghaus HF, Ravoo BJ (2016) Photochemical microcontact printing by Tetrazole chemistry. Langmuir 32:2277–2282CrossRefGoogle Scholar
  141. 141.
    Buten C, Lamping S, Körsgen M, Arlinghaus HF, Jamieson C, Ravoo BJ (2018) Surface functionalization with carboxylic acids by photochemical microcontact printing and Tetrazole chemistry. Langmuir 34:2132–2138CrossRefGoogle Scholar
  142. 142.
    Wendeln C, Ravoo BJ (2012) Surface patterning by microcontact chemistry. Langmuir 28:5527–5538CrossRefGoogle Scholar
  143. 143.
    Wendler F, Rudolph T, Görls H, Jasinski N, Trouillet V, Barner-Kowollik C, Schacher FH (2016) Maleimide-functionalized Poly(2-ethyl-2-oxazoline): synthesis and reactivity. Polym Chem 7:2419–2426CrossRefGoogle Scholar
  144. 144.
    Gegenhuber T, Abt D, Welle A, Özbek S, Goldmann AS, Barner-Kowollik C (2017) Spatially resolved photochemical coding of reversibly anchored Cysteine-Rich domains. J Mater Chem B 5:4993–5000CrossRefGoogle Scholar
  145. 145.
    Tischer T, Rodriguez-Emmenegger C, Trouillet V, Welle A, Schueler V, Mueller JO, Goldmann AS, Brynda E, Barner-Kowollik C (2014) Photo-patterning of non-fouling polymers and biomolecules on paper. Adv Mater 26:4087–4092CrossRefGoogle Scholar
  146. 146.
    Stolzer L, Vigovskaya A, Barner-Kowollik C, Fruk L (2015) A self-reporting tetrazole-based linker for the biofunctionalization of gold nanorods. Chem—A Eur J 21:14309–14313CrossRefGoogle Scholar
  147. 147.
    Delafresnaye L, Zaquen N, Kuchel RP, Blinco JP, Zetterlund PB, Barner-Kowollik C (2018) A simple and versatile pathway for the synthesis of visible light photoreactive nanoparticles. Adv Funct Mater 28:1800342CrossRefGoogle Scholar
  148. 148.
    Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117:1105–1318CrossRefGoogle Scholar
  149. 149.
    de los Santos Pereira A, Kostina NY, Bruns M, Rodriguez-Emmenegger C, Barner-Kowollik C (2015) Phototriggered functionalization of hierarchically structured polymer brushes. Langmuir 31:5899–5907Google Scholar
  150. 150.
    Wilke P, Abt D, Große S, Barner-Kowollik C, Börner HG (2017) Selective functionalization of laser printout patterns on cellulose paper sheets coated with surface-specific peptides. J Mater Chem A 5:16144–16149CrossRefGoogle Scholar
  151. 151.
    Blasco E, Piñol M, Oriol L, Schmidt BVKJ, Welle A, Trouillet V, Bruns M, Barner-Kowollik C (2013) Photochemical generation of light responsive surfaces. Adv Funct Mater 23:4011–4019CrossRefGoogle Scholar
  152. 152.
    Abt D, Schmidt BVKJ, Pop-Georgievski O, Quick AS, Danilov D, Kostina NY, Bruns M, Wenzel W, Wegener M, Rodriguez-Emmenegger C, Barner-Kowollik C (2015) Designing molecular printboards: a photolithographic platform for recodable surfaces. Chem—A Eur J 21:13186–13190CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
  2. 2.Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations