Advertisement

Nitrile Imines and Their Properties

  • Craig JamiesonEmail author
  • Keith Livingstone
Chapter
  • 7 Downloads

Abstract

This chapter introduces the nitrile imine 1,3-dipole, examining the history behind its discovery and the core spectroscopic characteristics associated with the species. The different resonance forms available to nitrile imines can often complicate their characterisation, however appropriate interrogation of data such as UV-Vis, IR and NMR spectra may elucidate the core properties of the dipole. Substitution on either terminus of this typically highly reactive intermediate can also improve stability, enabling the isolation of some nitrile imines at room temperature.

Keywords

Nitrile imine 1,3-dipole Spectroscopy Properties Isolation 

References

  1. 1.
    Huisgen R, Seidel M, Sauer J, McFarland J, Wallbillich G (1959) Communications: the formation of nitrile imines in the thermal breakdown of 2,5-disubstituted Tetrazoles. J Org Chem 24:892–893CrossRefGoogle Scholar
  2. 2.
    Huisgen R, Sauer J, Sturm HJ (1958) Acylierung 5-substitutierter Tetrazole zu 1.3.4-oxdiazolen. Angew Chemie 70:272–273CrossRefGoogle Scholar
  3. 3.
    Huisgen R, Sauer J, Sturm HJ, Markgraf JH (1960) Ringöffnungen der Azole, II. Die Bildung von 1.3.4-oxdiazolen bei der Acylierung 5-substituierter Tetrazole. Chem Ber 93:2106–2124CrossRefGoogle Scholar
  4. 4.
    Huisgen R, Sauer J, Seidel M (1961) Ringöffnungen der Azole, VI. Die Thermolyse 2.5-disubstituierter Tetrazole zu Nitriliminen. Chem Ber 94:2503–2509CrossRefGoogle Scholar
  5. 5.
    Huisgen R, Sauer J, Seidel M (1960) Ringöffnungen der Azole, IV. Die Synthese von 1.2.4-Triazolen aus 5-substituierten Tetrazolen und Carbonsäure-imidchloriden. Chem Ber 93:2885–2891CrossRefGoogle Scholar
  6. 6.
    Huisgen R, Sturm HJ, Seidel M (1961) Ringöffnungen der Azole, V. Weitere Reaktionen der Tetrazole mit elektrophilen Agenzien. Chem Ber 94:1555–1562CrossRefGoogle Scholar
  7. 7.
    Huisgen R, Grashey R, Seidel M, Knupfer H, Schmidt R (1962) 1.3-Dipolare Additionen, III. Umsetzungen des Diphenylnitrilimins mit Carbonyl und Thiocarbonyl-Verbindungen. Justus Liebigs Ann Chem 658:169–180CrossRefGoogle Scholar
  8. 8.
    Huisgen R, Seidel M, Wallbillich G, Knupfer H (1962) Diphenyl-nitrilimin und seine 1.3-dipolaren additionen an alkene und alkine. Tetrahedron 17:3–29CrossRefGoogle Scholar
  9. 9.
    Huisgen R, Grashey R, Seidel M, Wallbillich G, Knupfer H, Schmidt R (1962) 1.3-Dipolare Additionen, II. Synthese von 1.2.4-Triazolen aus Nitriliminen und Nitrilen. Justus Liebigs Ann Chem 653:105–113CrossRefGoogle Scholar
  10. 10.
    Huisgen R, Grashley R, Knupfer H, Kunz R, Seidel M (1964) 1.3-Dipolare Cycloadditionen, VI. Anlagerung der Nitrilimine an Azomethine und Isocyanate. Chem Ber 97:1085–1095CrossRefGoogle Scholar
  11. 11.
    Huisgen R, Grashey R, Aufderhaar E, Kunz R (1965) 1.3-Dipolare Cycloadditionen, XIII. Additionen der Nitrilimine an Oxime. Azine und andere CN-Doppelbindungen. Chem Ber 98:642–649CrossRefGoogle Scholar
  12. 12.
    Huisgen R, Aufderhaar E, Wallbillich G (1965) 1.3-Dipolare Cycloadditionen, XVI: Zur Bildung von 1.4-Dihydro-tetrazinen aus Nitriliminen; 1.4-Diphenyl-1.4-dihydro-1.2.4.5-tetrazin und isomere Verbindungen. Chem Ber 98:1476–1486CrossRefGoogle Scholar
  13. 13.
    Huisgen R, Knupfer H, Sustmann R, Wallbillich G, Weberndörfer V (1967) 1.3-Dipolare Cycloadditionen, XXVII. Zur Anlagerung des Diphenylnitrilimins an nichtkonjugierte Alkene und Alkine; Sterischer Ablauf, Orientierung un Substituenteneinfluß. Chem Ber 100:1580–1592CrossRefGoogle Scholar
  14. 14.
    Clovis JS, Eckell A, Huisgen R, Sustmann R, Wallbillich G, Weberndörfer V (1967) 1.3-Dipolare Cycloadditionen, XXVIII. Diphenylnitrilimin und arylkonjugierte alkene. Chem Ber 100:1593–1601CrossRefGoogle Scholar
  15. 15.
    Huisgen R, Sustmann R, Wallbillich G (1967) 1.3-Dipolare Cycloadditionen, XXIX. Orientierungsphänomene bei der Anlagerung von Nitriliminen an α.β-ungesättigte Carbonester, Vinyläther und Enamine. Chem Ber 100:1786–1801CrossRefGoogle Scholar
  16. 16.
    Eckell A, Huisgen R, Sustmann R, Wallbillich G, Grashey D, Spindler E (1967) 1.3-Dipolare Cycloadditionen, XXXI. Dipolarophilen-Aktivitäten gegenüber Diphenylnitrilimin und zahlenmäßige Ermittlung der Substituenteneinflüsse. Chem Ber 100:2192–2213CrossRefGoogle Scholar
  17. 17.
    Huisgen R, Weberndörfer V (1967) 1.3-Dipolare Cycloadditionen, XXVI. Intramolekulare Stabilisierung bei einem N-Trinitrophenylnitrilimin. Chem Ber 100:71–78CrossRefGoogle Scholar
  18. 18.
    Clovis JS, Eckell A, Huisgen R, Sustmann R (1967) 1.3-Dipolare Cycloadditionen, XXV. Der Nachweis des freien Diphenylnitrilimins als Zwischenstufe bei Cycloadditionen. Chem Ber 100:60–70CrossRefGoogle Scholar
  19. 19.
    Oh LM (2006) Synthesis of Celecoxib via 1,3-Dipolar Cycloaddition. Tetrahedron Lett 47:7943–7946CrossRefGoogle Scholar
  20. 20.
    Lim RKV, Lin Q (2011) Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Acc Chem Res 44:828–839CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Delaittre G, Goldmann AS, Mueller JO, Barner-Kowollik C (2015) Efficient photochemical approaches for spatially resolved surface functionalization. Angew Chemie Int Ed 54:11388–11403CrossRefGoogle Scholar
  22. 22.
    Huisgen R (1963) 1,3-Dipolar cycloadditions. past and future. Angew Chemie Int Ed English 2:565–598CrossRefGoogle Scholar
  23. 23.
    Caramella P, Houk KN (1976) Geometries of nitrilium betaines. The clarification of apparently anomalous reactions of 1,3-dipoles. J Am Chem Soc 98:6397–6399CrossRefGoogle Scholar
  24. 24.
    Bock H, Dammel R, Fischer S, Wentrup C (1987) Nitrile imines RC = N(+) − N(−) − Si(CH3)3: optimization of gas phase synthesis and assignment of their photoelectron spectra. Tetrahedron Lett 28:617–620CrossRefGoogle Scholar
  25. 25.
    Wong MW, Wentrup C (1993) Structure of nitrilimine: allenic or propargylic? J Am Chem Soc 115:7743–7746CrossRefGoogle Scholar
  26. 26.
    Bégué D, Qiao GG, Wentrup C (2012) Nitrile imines: matrix isolation, IR spectra, structures, and rearrangement to carbodiimides. J Am Chem Soc 134:5339–5350CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Caramella P, Gandour RW, Hall JA, Deville CG, Houk KN (1977) A derivation of the shapes and energies of the molecular orbitals of 1,3-dipoles. Geometry optimizations of these species by MINDO/2 and MINDO/3. J Am Chem Soc 99:385–392CrossRefGoogle Scholar
  28. 28.
    Granier M, Baceiredo A, Huch V, Veith M, Bertrand G (1991) X-ray crystal structure and reactivity of an N-Phosphonio-substituted nitrilimine: a stable electrophilic nitrilimine. Inorg Chem 30:1161–1162CrossRefGoogle Scholar
  29. 29.
    Hiberty PC, Leforestier C (1978) Expansion of molecular orbital wave functions into valence bond wave functions. A simplified procedure. J Am Chem Soc 100:2012–2017CrossRefGoogle Scholar
  30. 30.
    Moffat J (1979) The isomers of diazomethane. J Mol Struct 52:275–280CrossRefGoogle Scholar
  31. 31.
    Thomson C, Glidewell C (1983) An ab initio study of the relative stabilities of the isomers of CH2N2 and SiH2N2. J Comput Chem 4:1–8CrossRefGoogle Scholar
  32. 32.
    Kahn SD, Hehre WJ, Pople JA (1987) Hartree-fock descriptions of 1,3-dipoles. Zwitterions, 1,3-diradicals, or hypervalent species? J Am Chem Soc 109:1871–1873CrossRefGoogle Scholar
  33. 33.
    Guimon C, Khayar S, Gracian F, Begtrup M, Pfister-Guillouzo G (1989) HeI photoelectron and theoretical study of the gas phase flash pyrolysis of tetrazole and analysis of CN2H2 energy hypersurface. Chem Phys 138:157–171CrossRefGoogle Scholar
  34. 34.
    Hiberty PC, Ohanessian G (1982) Comparison of minimal and extended basis sets in terms of resonant formulas. application to 1,3 dipoles. J Am Chem Soc 104:66–70CrossRefGoogle Scholar
  35. 35.
    Kawauchi S, Tachibana A, Mori M, Shibusa Y, Yamabe T (1994) Molecular structures and relative stability of SiH2N2 and CH2N2 isomers. J Mol Struct 310:255–267Google Scholar
  36. 36.
    Maier G, Eckwert J, Bothur A, Reisenauer HP, Schmidt C (1996) Photochemical fragmentation of unsubstituted Tetrazole, 1,2,3-triazole, and 1,2,4-triazole: first matrix-spectroscopic identification of nitrilimine HCNNH. Liebigs Ann 1041–1053Google Scholar
  37. 37.
    Goldberg N, Fiedler A, Schwarz H (1994) Gas-phase generation and characterization of nitrileimine, HCNNH: a new, stable isomer of diazomethane. Helv Chim Acta 77:2354–2362CrossRefGoogle Scholar
  38. 38.
    Kiselev VG, Cheblakov PB, Gritsan NP (2011) Tautomerism and thermal decomposition of tetrazole: high-level ab initio study. J Phys Chem A 115:1743–1753CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ríos-Gutiérrez M, Domingo LR (2019) The carbenoid-type reactivity of simplest nitrile imine from a molecular electron density theory perspective. Tetrahedron 75:1961–1967CrossRefGoogle Scholar
  40. 40.
    Granier M, Baceiredo A, Dartiguenave Y, Dartiguenave M, Menu MJ, Bertrand G (1990) Synthesis and reactivity of stable phosphorus-substituted nitrilimines. X-ray crystal structure of C-[bis (diisopropylamino) thioxophosphoranyl]-N-[bis (diisopropylamino) phosphanyl] nitrilimine. J Am Chem Soc 112:6277–6285CrossRefGoogle Scholar
  41. 41.
    Réau R, Veneziani G, Dahan F, Bertrand G (1992) A straightforward synthesis of nitrilimines; X-ray crystal structure of a nitrilimine stabilized by non-heteroatom substituents. Angew Chemie Int Ed English 31:439–440CrossRefGoogle Scholar
  42. 42.
    Fauré J-L, Réau R, Wong MW, Koch R, Wentrup C, Bertrand G (1997) Nitrilimines: evidence for the allenic structure in solution, experimental and ab initio studies of the barrier to racemization, and first diastereoselective [3 + 2]-cycloaddition. J Am Chem Soc 119:2819–2824CrossRefGoogle Scholar
  43. 43.
    Emig N, Gabbaï FP, Krautscheid H, Réau R, Bertrand G (1998) The azide-nitrilimine analogy in aluminum chemistry. Angew Chemie Int Ed 37:989–992CrossRefGoogle Scholar
  44. 44.
    Arthur M-P, Baceiredo A, Fischer J, De Cian A, Bertrand G (1992) Substitution reactions at nitrilimine skeletons. Synthesis (Stuttg) 43–45Google Scholar
  45. 45.
    Uhl W, Hannemann F, Saak W, Wartchow R (1999) Diazomethane derivatives bearing dialkylaluminium or dialkylgallium substituents—the isomeric diazomethane and nitrile imine structures realized by the different coordination behavior of aluminium and gallium. Eur J Inorg Chem 1999:771–776CrossRefGoogle Scholar
  46. 46.
    Nunes CM, Reva I, Fausto R, Bégué D, Wentrup C (2015) Bond-shift isomers: the co-existence of allenic and propargylic phenylnitrile imines. Chem Commun 51:14712–14715CrossRefGoogle Scholar
  47. 47.
    Herges R (1994) Organizing principle of complex reactions and theory of coarctate transition states. Angew Chemie Int Ed English 33:255–276CrossRefGoogle Scholar
  48. 48.
    Bégué D, Wentrup C (2014) Carbenic nitrile imines: properties and reactivity. J Org Chem 79:1418–1426CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nunes CM, Reva I, Rosado MTS, Fausto R (2015) The Quest for carbenic nitrile imines: experimental and computational characterization of C-amino nitrile imine. European J Org Chem 7484–7493Google Scholar
  50. 50.
    Sieber W, Gilgen P, Chaloupka S, Hansen H-J, Schmid H (1973) Tieftemperaturbestrahlungen von 3-Phenyl-2H-azirinen. Helv Chim Acta 56:1679–1690CrossRefGoogle Scholar
  51. 51.
    Meier Hansruedi, Heinzelmann Willy, Heimgartner H (1980) Direct detection of diphenylnitrilimine in the photolysis of 2,5-diphenyltetrazole. Chimia (Aarau) 34:504–506Google Scholar
  52. 52.
    Meier Hansruedi, Heinzelmann Willy, Heimgartner H (1980) Inter- and intramolecular trapping reactions of photochemically generated diarylnitrilimines. Chimia (Aarau) 34:506–508Google Scholar
  53. 53.
    Toubro NH, Holm A (1980) Nitrilimines. J Am Chem Soc 102:2093–2094CrossRefGoogle Scholar
  54. 54.
    Csongár C, Leihkauf P, Lohse V, Tomaschewski G (1984) Photochemistry of aryl-substituted 2H-Tetrazoles I. Direct spectroscopic detection of diarylnitrilimines. Zeitschrift für Chemie 24:96–97CrossRefGoogle Scholar
  55. 55.
    Csongár C, Leihkauf P, Lohse V, Siegmund M, Tomaschewski G (1985) Photochemistry of aryl-substituted 2 H-tetrazoles III. IR spectroscopic detection of diarylnitrilimines. Zeitschrift für Chemie 25:106–107CrossRefGoogle Scholar
  56. 56.
    Csongár C, Leihkauf P, Lohse V, Tomaschewski G (1985) Photochemistry of diarylsubstituted 2H-tetrazoles II, The influence of the substituents on the absorption properties of diarylnitrilmines. J für Prakt Chemie 327:96–102CrossRefGoogle Scholar
  57. 57.
    Leihkauf P, Lohse V, Csongár C, Siegmund M, Tomaschewski G (1987) Photochemistry of diaryl-substituted 2H-tetrazoles V. On the influence of the substituents on the C = N-Valence vibrations of diaryl-substituted nitrilimines. Zeitschrift für Chemie 27:371–372CrossRefGoogle Scholar
  58. 58.
    Leihkauf P, Lohse V, Csongár C, Tomaschewski G (1985) Photochemistry of aryl-substituted 2H-tetrazoles IV. and Sydnone II. Flash photolysis of diaryl nitrilimines. Zeitschrift für Chemie 25:266–267CrossRefGoogle Scholar
  59. 59.
    Bhattacharyya K, Ramalah D, Das PK, George MV (1987) Flash photolysis studies of nitrile imines and related intermediates photogenerated from sydnones and tetrazoles in fluid solutions. J Photochem 36:63–84CrossRefGoogle Scholar
  60. 60.
    Wentrup C, Flammang R (1998) Studies of reactive intermediates using matrix and gas-phase techniques. J Phys Org Chem 11:350–355CrossRefGoogle Scholar
  61. 61.
    Wentrup C, Fischer S, Maquestiau A, Flammang R (1985) Nitrile imines: thermal generation, direct observation, and subsequent trapping. Angew Chemie Int Ed English 24:56–57CrossRefGoogle Scholar
  62. 62.
    Nunes CM, Araujo-Andrade C, Fausto R, Reva I (2014) Generation and characterization of a 4π-electron three-membered ring 1H-diazirine: an elusive intermediate in nitrile imine-carbodiimide isomerization. J Org Chem 79:3641–3646CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    von Locquenghien KH, Réau R, Bertrand G (1991) The first nitrogen NMR spectroscopic study of nitrile imides (Nitrilimines). J Chem Soc, Chem Commun 1192–1193Google Scholar
  64. 64.
    Zheng S-L, Wang Y, Yu Z, Lin Q, Coppens P (2009) Direct observation of a photoinduced nonstabilized nitrile imine structure in the solid state. J Am Chem Soc 131:18036–18037CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Castan F, Baceiredo A, Bigg D, Bertrand G (1991) Synthesis and reactivity of stable silyl-substituted nitrilimines. J Org Chem 56:1801–1807CrossRefGoogle Scholar
  66. 66.
    Bertrand G, Wentrup C (1994) Nitrile imines: from matrix characterization to stable compounds. Angew Chemie Int Ed English 33:527–545CrossRefGoogle Scholar
  67. 67.
    Leue C, Reau R, Neumann B, Stammler H-G, Jutzi P, Bertrand G (1994) Preparation of mono- and bis(germyl) nitrilimines from germylenes and stannyl diazo derivatives. Organometallics 13:436–438CrossRefGoogle Scholar
  68. 68.
    Sicard G, Baceiredo A, Bertrand G (1988) Synthesis and reactivity of a stable nitrile imine. J Am Chem Soc 110:2663–2664CrossRefGoogle Scholar
  69. 69.
    Müller E, Disselhoff H (1933) Über die Einwirkung von natrium auf aliphatische diazoverbindungen. Naturwissenschaften 21:661CrossRefGoogle Scholar
  70. 70.
    Müller E, Disselhoff H (1934) Studies on diazomethanes I. Justus Liebig’s Ann der Chemie 512:250–263CrossRefGoogle Scholar
  71. 71.
    Müller E, Kreutzmann W (1934) Studies on diazomethanes II. Justus Liebig’s Ann der Chemie 512:264–275CrossRefGoogle Scholar
  72. 72.
    Müller E, Ludsteck D (1954) Studies on diazomethanes III: preparation of isodiazomethane and its rearrangement to diazomethane. Chem Ber 87:1887–1895CrossRefGoogle Scholar
  73. 73.
    Müller E, Ludsteck D (1955) Studies on diazomethanes V: reactive behavior of diazomethyllithium. Chem Ber 88:921–933CrossRefGoogle Scholar
  74. 74.
    Müller E, Rundel W (1957) Studeis on diazomethanes IX. Another recent synthesis of diazomethane and isodiazomethane. Chem Ber 90:2673–2678CrossRefGoogle Scholar
  75. 75.
    Müller E, Kästner P, Rundel W (1965) Studies on diazomethanes XXII: The structure of isodiazomethane. Chem Ber 98:711–714CrossRefGoogle Scholar
  76. 76.
    Müller E, Kästner P, Beutler R, Rundel W, Suhr H, Zeeh B (1968) Studies on diazomethanes XXVI isodiazomethan = knallsäureamid = N-isocyanamin. Justus Liebigs Ann Chem 713:87–95CrossRefGoogle Scholar
  77. 77.
    Müller E, Beutler R, Zeeh B (1968) Studies on diazomethane XXVIII bang acid amide: the double tautomer of diazomethane. Justus Liebigs Ann Chem 719:72–79CrossRefGoogle Scholar
  78. 78.
    Beutler R, Zeeh B, Müller E (1969) Studies on diazomethanes XXIX. Reactions with the tautomeric diazomethyl anion. Chem Ber 102:2636–2639CrossRefGoogle Scholar
  79. 79.
    Boche G, Lohrenz JCW, Schubert F (1994) Lithio-diazomethane and lithio-(trimethylsilyl) diazomethane: theoretical and experimental studies of their structures, reactions and reaction products. Tetrahedron 50:5889–5902CrossRefGoogle Scholar
  80. 80.
    Müller E, Rundel W (1956) Studies on diazomethanes VI: reaction of diazoethane with methyllithium. Chem Ber 89:1065–1071CrossRefGoogle Scholar
  81. 81.
    Baceiredo A, Igau A, Bertrand G, Menu MJ, Dartiguenave Y, Bonnet JJ (1986) Phosphinocarbene-phosphaalkene rearrangement and intramolecular wittig-like reaction involving a phosphorus vinyl ylide. J Am Chem Soc 108:7868–7869CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Menu MJ, Crocco G, Dartiguenave M, Dartiguenave Y, Bertrand G (1988) Reactivity of Rh(PMe3)4Cl with lithium derivatives of phosphorus-substituted diazomethanes. First evidence for a transient nitrogen-transition-metal nitrile imine. X-ray structure of [cyclic] (PMe3)2RhNBuNCHP (N-iso-Pr2)2. Organometallics 7:2231–2233CrossRefGoogle Scholar
  83. 83.
    Boche G, Harms K, Marsch M, Schubert F (1994) {6 Lithio(trimethylsilyl)diazomethane 2 Lithio[4,5-bis(trimethylsilyl)triazene]·7 Diethyl Ether}: the first X-ray structure analysis of a lithiated diazoalkane. Chem Ber 127:2193–2195CrossRefGoogle Scholar
  84. 84.
    Reau R, Veneziani G, Bertrand G (1992) Formation of nitrilimines and diazo compounds from lithiated and stannyl diazo derivatives: scope and mechanism. J Am Chem Soc 114:6059–6063CrossRefGoogle Scholar
  85. 85.
    Castan F, Baceiredo A, Bertrand G (1989) A distillable C- and N-silylated nitrile imine. Angew Chemie Int Ed English 28:1250–1251CrossRefGoogle Scholar
  86. 86.
    Arthur MP, Goodwin HP, Baceiredo A, Dillon KB, Bertrand G (1991) Synthesis of stable boryl-substituted diazomethane and nitrilimines. Organometallics 10:3205–3210CrossRefGoogle Scholar
  87. 87.
    Chu J, Kefalidis CE, Maron L, Leng X, Chen Y (2013) Chameleon behavior of a newly synthesized scandium nitrilimine derivative. J Am Chem Soc 135:8165–8168CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK

Personalised recommendations