The Persistence Landscape and Some of Its Properties

  • Peter BubenikEmail author
Conference paper
Part of the Abel Symposia book series (ABEL, volume 15)


Persistence landscapes map persistence diagrams into a function space, which may often be taken to be a Banach space or even a Hilbert space. In the latter case, it is a feature map and there is an associated kernel. The main advantage of this summary is that it allows one to apply tools from statistics and machine learning. Furthermore, the mapping from persistence diagrams to persistence landscapes is stable and invertible. We introduce a weighted version of the persistence landscape and define a one-parameter family of Poisson-weighted persistence landscape kernels that may be useful for learning. We also demonstrate some additional properties of the persistence landscape. First, the persistence landscape may be viewed as a tropical rational function. Second, in many cases it is possible to exactly reconstruct all of the component persistence diagrams from an average persistence landscape. It follows that the persistence landscape kernel is characteristic for certain generic empirical measures. Finally, the persistence landscape distance may be arbitrarily small compared to the interleaving distance.



This material is based upon work supported by, or in part by, the Army Research Laboratory and the Army Research Office under contract/grant number W911NF-18-1-0307. This research was partially supported by the Southeast Center for Mathematics and Biology, an NSF-Simons Research Center for Mathematics of Complex Biological Systems, under National Science Foundation Grant No. DMS-1764406 and Simons Foundation Grant No. 594594. The author would also like to thank Pawel Dlotko, Michael Kerber, and Oliver Vipond for helpful conversations, Leo Betthauser, Nikola Milicevic, and Alex Wagner for proofreading an earlier draft, and the Mathematisches Forschungsinstitut Oberwolfach (MFO) where some of this work was started.


  1. 1.
    Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research 18(8), 1–35 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Adcock, A., Carlsson, E., Carlsson, G.: The ring of algebraic functions on persistence bar codes. Homology Homotopy Appl. 18(1), 381–402 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Adler, R.J., Agami, S., Pranav, P.: Modeling and replicating statistical topology and evidence for CMB nonhomogeneity. Proc. Natl. Acad. Sci. USA 114(45), 11878–11883 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Adler, R.J., Bobrowski, O., Borman, M.S., Subag, E., Weinberger, S.: Persistent homology for random fields and complexes. In: Borrowing strength: theory powering applications—a Festschrift for Lawrence D. Brown, Inst. Math. Stat. Collect., vol. 6, pp. 124–143. Inst. Math. Statist., Beachwood, OH (2010)Google Scholar
  5. 5.
    Anirudh, R., Venkataraman, V., Natesan Ramamurthy, K., Turaga, P.: A riemannian framework for statistical analysis of topological persistence diagrams. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2016)Google Scholar
  6. 6.
    Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198–218 (2016)MathSciNetGoogle Scholar
  7. 7.
    Bernadette J. Stolz, T.E., Nahkuri, S., Porter, M.A., Harrington, H.A.: Topological data analysis of task-based fmri data from experiments on schizophrenia (2018). ArXiv:1809.08504 [q-bio.QM]Google Scholar
  8. 8.
    Betthauser, L., Bubenik, P., Edwards, P.B.: Graded persistence diagrams and persistence landscapes (2019). ArXiv:1904.12807 [math.AT]Google Scholar
  9. 9.
    Biscio, C., Møller, J.: The accumulated persistence function, a new useful functional summary statistic for topological data analysis, with a view to brain artery trees and spatial point process applications (2016). ArXiv:1611.00630 [math.ST]Google Scholar
  10. 10.
    Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bollobás, B.: Random graphs, Cambridge Studies in Advanced Mathematics, vol. 73, second edn. Cambridge University Press, Cambridge (2001)Google Scholar
  12. 12.
    Bonis, T., Ovsjanikov, M., Oudot, S., Chazal, F.: Persistence-based pooling for shape pose recognition. In: 6th International Workshop on Computational Topology in Image Context (CTIC 2016) (2016)Google Scholar
  13. 13.
    Bouza, J.: tda-tools (2018). Https:// Scholar
  14. 14.
    Bubenik, P.: Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research 16, 77–102 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bubenik, P., Carlsson, G., Kim, P.T., Luo, Z.M.: Statistical topology via Morse theory persistence and nonparametric estimation. In: Algebraic Methods in Statistics and Probability II, Contemp. Math., vol. 516, pp. 75–92. Amer. Math. Soc., Providence, RI (2010)Google Scholar
  16. 16.
    Bubenik, P., Dlotko, P.: A persistence landscapes toolbox for topological statistics. Journal of Symbolic Computation 78, 91–114 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bubenik, P., Kim, P.T.: A statistical approach to persistent homology. Homology, Homotopy Appl. 9(2), 337–362 (2007)Google Scholar
  18. 18.
    Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Bubenik, P., Vergili, T.: Topological spaces of persistence modules and their properties. J. Appl. Comput. Topol. 2(3–4), 233–269 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Carrière, M., Cuturi, M., Oudot, S.: Sliced wasserstein kernel for persistence diagrams. In: Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17, pp. 664–673. (2017)Google Scholar
  21. 21.
    Carrière, M., Oudot, S.Y., Ovsjanikov, M.: Stable topological signatures for points on 3d shapes. Computer Graphics Forum 34(5), 1–12 (2015)Google Scholar
  22. 22.
    Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the 25th annual symposium on Computational geometry, SCG ’09, pp. 237–246. ACM, New York, NY, USA (2009)Google Scholar
  23. 23.
    Chazal, F., Fasy, B.T., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L.: Subsampling methods for persistent homology. In: Proceedings of the 32nd International Conference on Machine Learning, Lille, France, vol. 37. JMLR: W&CP (2015)Google Scholar
  24. 24.
    Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Singh, A., Wasserman, L.: On the bootstrap for persistence diagrams and landscapes. Modeling and Analysis of Information Systems 20(6), 96–105 (2014)Google Scholar
  25. 25.
    Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. J. Comput. Geom. 6(2), 140–161 (2015)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Chen, Y.C., Wang, D., Rinaldo, A., Wasserman, L.: Statistical analysis of persistence intensity functions (2015). ArXiv:1510.02502 [stat.ME]Google Scholar
  27. 27.
    Chevyrev, I., Nanda, V., Oberhauser, H.: Persistence paths and signature features in topological data analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence pp. 1–1 (2019)Google Scholar
  28. 28.
    Chittajallu, D.R., Siekierski, N., Lee, S., Gerber, S., Beezley, J., Manthey, D., Gutman, D., Cooper, L.: Vectorized persistent homology representations for characterizing glandular architecture in histology images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 232–235 (2018)Google Scholar
  29. 29.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.J.: A barcode shape descriptor for curve point cloud data. Computers & Graphics 28(6), 881–894 (2004)Google Scholar
  31. 31.
    Corcoran, P., Jones, C.B.: Spatio-temporal modeling of the topology of swarm behavior with persistence landscapes. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’16, pp. 65:1–65:4. ACM, New York, NY, USA (2016)Google Scholar
  32. 32.
    Crawford, L., Monod, A., Chen, A.X., Mukherjee, S., Rabadán, R.: Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. Journal of the American Statistical Association (2019). ArXiv:1611.06818 [stat.AP]Google Scholar
  33. 33.
    Di Fabio, B., Ferri, M.: Comparing persistence diagrams through complex vectors. In: V. Murino, E. Puppo (eds.) Image Analysis and Processing — ICIAP 2015, pp. 294–305. Springer International Publishing, Cham (2015)Google Scholar
  34. 34.
    Dłotko, P., Wanner, T.: Topological microstructure analysis using persistence landscapes. Physica D: Nonlinear Phenomena 334, 60–81 (2016)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Donato, I., Gori, M., Pettini, M., Petri, G., De Nigris, S., Franzosi, R., Vaccarino, F.: Persistent homology analysis of phase transitions. Phys. Rev. E 93, 052138 (2016)Google Scholar
  36. 36.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the r package tda (2014). ArXiv:1411.1830 [cs.MS]Google Scholar
  38. 38.
    Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mischaikow, K., Nanda, V.: A topological measurement of protein compressibility. Jpn. J. Ind. Appl. Math. 32(1), 1–17 (2015)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Garg, A., Lu, D., Popuri, K., Beg, M.F.: Brain geometry persistent homology marker for parkinson’s disease. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 525–528 (2017)Google Scholar
  40. 40.
    Garg, A., Lu, D., Popuri, K., Beg, M.F.: Topology of surface displacement shape feature in subcortical structures. In: M.J. Cardoso, T. Arbel, E. Ferrante, X. Pennec, A.V. Dalca, S. Parisot, S. Joshi, N.K. Batmanghelich, A. Sotiras, M. Nielsen, M.R. Sabuncu, T. Fletcher, L. Shen, S. Durrleman, S. Sommer (eds.) Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, pp. 21–30. Springer International Publishing, Cham (2017)Google Scholar
  41. 41.
    Gidea, M., Katz, Y.: Topological data analysis of financial time series: landscapes of crashes. Phys. A 491, 820–834 (2018)MathSciNetGoogle Scholar
  42. 42.
    Kališnik, S.: Tropical coordinates on the space of persistence barcodes. Foundations of Computational Mathematics 19, 101–129 (2019)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Kovacev-Nikolic, V., Bubenik, P., Nikolić, D., Heo, G.: Using persistent homology and dynamical distances to analyze protein binding. Stat. Appl. Genet. Mol. Biol. 15(1), 19–38 (2016)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Kusano, G., Fukumizu, K., Hiraoka, Y.: Persistence weighted gaussian kernel for topological data analysis. In: Proceedings of the 33rd International Conference on Machine Learning, vol. 48. JMLR: W&CP (2016)Google Scholar
  45. 45.
    Le, T., Yamada, M.: Persistence fisher kernel: A riemannian manifold kernel for persistence diagrams. In: Proceedings of the 32Nd International Conference on Neural Information Processing Systems, NIPS’18, pp. 10028–10039. Curran Associates Inc., USA (2018)Google Scholar
  46. 46.
    Lee, Y., Barthel, S.D., Dłotko, P., Moosavi, S.M., Hess, K., Smit, B.: Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications 8, 15396 EP – (2017)Google Scholar
  47. 47.
    Lee, Y., Barthel, S.D., Dlotko, P., Moosavi, S.M., Hess, K., Smit, B.: High-throughput screening approach for nanoporous materials genome using topological data analysis: Application to zeolites. Journal of Chemical Theory and Computation 14(8), 4427–4437 (2018)Google Scholar
  48. 48.
    Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Liu, J.Y., Jeng, S.K., Yang, Y.H.: Applying topological persistence in convolutional neural network for music audio signals (2016). ArXiv:1608.07373 [cs.NE]Google Scholar
  50. 50.
    Mike, J.L., Maroulas, V.: Nonparametric estimation of probability density functions of random persistence diagrams (2018). ArXiv:1803.02739 [math.ST]Google Scholar
  51. 51.
    Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Problems 27(12), 124007, 22 (2011)Google Scholar
  52. 52.
    Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., Harer, J.: Probabilistic Fréchet means for time varying persistence diagrams. Electron. J. Stat. 9(1), 1173–1204 (2015)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Patrangenaru, V., Bubenik, P., Paige, R.L., Osborne, D.: Challenges in topological object data analysis. Sankhya A 81(1), 244–271 (2019)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Petrov, P., Rush, S.T., Zhai, Z., Lee, C.H., Kim, P.T., Heo, G.: Topological data analysis of clostridioides difficile infection and fecal microbiota transplantation (2017). ArXiv:1707.08774 [q-bio.QM]Google Scholar
  55. 55.
    Phillips, J.M., Wang, B., Zheng, Y.: Geometric inference on kernel density estimates. In: 31st International Symposium on Computational Geometry, LIPIcs. Leibniz Int. Proc. Inform., vol. 34, pp. 857–871. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2015)Google Scholar
  56. 56.
    Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: Proc. 2015 IEEE Conf. Comp. Vision & Pat. Rec. (CVPR ’15) (2015)Google Scholar
  57. 57.
    Riihimäki, H., Chacholski, W.: Generalized persistence analysis based on stable rank invariant (2018). ArXiv:1807.01217 [cs.CG]Google Scholar
  58. 58.
    Robins, V., Turner, K.: Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids. Phys. D 334, 99–117 (2016)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Robinson, A., Turner, K.: Hypothesis testing for topological data analysis. Journal of Applied and Computational Topology 1(2), 241–261 (2017)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Stolz, B.J., Harrington, H.A., Porter, M.A.: Persistent homology of time-dependent functional networks constructed from coupled time series. Chaos 27(4), 047410, 17 (2017)Google Scholar
  61. 61.
    Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discrete Comput. Geom. 52(1), 44–70 (2014)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Turner, K., Mukherjee, S., Boyer, D.M.: Persistent homology transform for modeling shapes and surfaces. Inf. Inference 3(4), 310–344 (2014)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Wang, Y., Ombao, H., Chung, M.K.: Topological epilepsy seizure detection in electroencephalographic signals. Proceedings. IEEE International Symposium On Biomedical Imaging 2015, 351–354 (2015)Google Scholar
  64. 64.
    Wang, Y., Ombao, H., Chung, M.K.: Topological data analysis of single-trial electroencephalographic signals. Ann. Appl. Stat. 12(3), 1506–1534 (2018)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations