Advertisement

A Comprehensive Analysis of MRI Based Brain Tumor Segmentation Using Conventional and Deep Learning Methods

  • Hikmat Khan
  • Syed Farhan Alam Zaidi
  • Asad SafiEmail author
  • Shahab Ud Din
Conference paper
  • 41 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1187)

Abstract

Brain tumor segmentation plays an important role in clinical diagnosis for neurologists. Different imaging modalities have been used to diagnose and segment brain tumor. Among all modalities, MRI is preferred because of its non-invasive nature and better visualization of internal details of the brain. However, MRI also comes with certain challenges like random noise, various intensity levels, and in-homogeneity that makes detection and segmentation a difficult task. Manual segmentation is extremely laborious and time consuming for the physicians. Manual segmentation is also highly dependent on the physician’s domain knowledge and practical experience. Also, the physician may not be able to see details at the pixel level and may only notice the tumor if it is more prominent and obvious. Therefore, there is a need for brain tumor segmentation techniques that play major role in perfect visualization to assist the physician in identifying different tumor regions. In this paper, we present recent advancements and comprehensive analysis of MRI-based brain tumor segmentation techniques that used conventional machine learning and deep learning methods. We analyze different proposed conventional and state-of-the-art methods in chronological order using Dice similarity, specificity, and sensitivity as performance measures.

Keywords

Brain tumor Segmentation Machine Learning Deep Learning Dice Similarity 2D and 3D convolutional ANN 

References

  1. 1.
    The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) - Adit Deshpande - CS Undergrad at UCLA (’19)Google Scholar
  2. 2.
    Tumor Types - National Brain Tumor SocietyGoogle Scholar
  3. 3.
    MICCAI 2014 challenge on multimodal brain tumor segmentation. In: Proceedings of the MICCAI-BRATS, Boston, Massachusetts (2014)Google Scholar
  4. 4.
    MICCAI challenge on multimodal brain tumor segmentation. Proceedings MICCAI-BRATS Workshop, 2016 (2016)Google Scholar
  5. 5.
    Abbasi, S., Tajeripour, F.: Detection of brain tumor in 3D MRI images using local binary patterns and histogram orientation gradient. Neurocomputing 219, 526–535 (2017)CrossRefGoogle Scholar
  6. 6.
    Abdel-Maksoud, E., Elmogy, M., Al-Awadi, R.: Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inf. J. 16(1), 71–81 (2015)CrossRefGoogle Scholar
  7. 7.
    Arikan, M., Fröhler, B., Möller, T.: Semi-automatic brain tumor segmentation using support vector machines and interactive seed selection. In: Proceedings of the MICCAI-BRATS, Boston, Massachusetts, pp. 1–3 (2014)Google Scholar
  8. 8.
    Farahani, K., Kalpathy-Cramer, J., Kwon, D., Menze, B.H., Reyes, M.: MICCAI 2015 challenge on multimodal brain tumor segmentation. In: Proceedings of the MICCAI-BRATS, Munich, Germany (2015)Google Scholar
  9. 9.
    Chang, P.D.: Fully convolutional neural networks with hyperlocal features for brain tumor segmentation. In: Proceedings MICCAI-BRATS Workshop, pp. 4–9 (2016)Google Scholar
  10. 10.
    Havaei, M., et al.: Brain tumor segmentation with deep neural networks. In: proceedings of BraTS-MICCAI (2014)Google Scholar
  11. 11.
    Ellwaa, A., et al.: Brain tumor segmantation using random forest trained on iteratively selected patients. International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Lecture Notes in Computer Science, pp. 129–137. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_13CrossRefGoogle Scholar
  12. 12.
    Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  13. 13.
    Kamnitsas, K., et al.: Deepmedic on brain tumor segmentation. BrainLes 2016. LNCS, vol. 10154. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_14CrossRefGoogle Scholar
  14. 14.
    Kaya, I.E., Pehlivanlı, A.Ç., Sekizkardeş, E.G., Ibrikci, T.: PCA based clustering for brain tumor segmentation of T1w MRI images. Comput. Methods Programs Biomed. 140, 19–28 (2017)CrossRefGoogle Scholar
  15. 15.
    Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based Segmentation of Medical Imaging Data. arXiv preprint arXiv:1701.03056 [cs.CV], January 2017
  16. 16.
    Szilagyi, L., Lefkovits, L., Lefkovits, S.: Brain tumor segmentation with optimized random forest. In: Proceedings MICCAI-BraTS Workshop, pp. 30–34 (2016)Google Scholar
  17. 17.
    Louis, D.N., et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016).  https://doi.org/10.1007/s00401-016-1545-1CrossRefGoogle Scholar
  18. 18.
    Lun, T.K., Hsu, W.: Brain tumor segmentation using deep convolutional neural network. In: Proceedings of BRATS-MICCAI (2016)Google Scholar
  19. 19.
    Wiest, R., Reyes, M., Meier, R., Knecht, U.: CRF-based brain tumor segmentation: alleviating the shrinking bias. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. LNCS. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55524-9_10CrossRefGoogle Scholar
  20. 20.
    Menze, B., Jakab, A., Bauer, S., Reyes, M., Prastawa, M., Van Leemput, K.: MICCAI 2012 challenge on multimodal brain tumor segmentation. In: Proceedings of the MICCAI-BRATS, Nice, France (2012)Google Scholar
  21. 21.
    Menze, B., Jakab, A., Reyes, M., Prastawa, M.: MICCAI 2013 challenge on multimodal brain tumor segmentation. In: Proceedings of the MICCAI-BRATS, Nagoya, Japan (2013)Google Scholar
  22. 22.
    Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 212–220. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46723-8_25CrossRefGoogle Scholar
  23. 23.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRefGoogle Scholar
  24. 24.
    Rao, V., Sarabi, M.S., Jaiswal, A.: Brain tumor segmentation with deep learning. In: Proceedings of MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), pp. 56–59 (2015)Google Scholar
  25. 25.
    Rathi, V.P., Palani, S.: Brain tumor MRI image classification with feature selection and extraction using linear discriminant analysis. arXiv preprint arXiv:1208.2128 (2012)
  26. 26.
    Reddy, K.K., Solmaz, B., Yan, P., Avgeropoulos, N.G., Rippe, D.J., Shah, M.: Confidence guided enhancing brain tumor segmentation in multi-parametric MRI. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 366–369. IEEE (2012)Google Scholar
  27. 27.
    Reza, S., Iftekharuddin, K.M.: Improved brain tumor tissue segmentation using texture features. In: Proceedings of MICCAI-BRATS Challenge on Multimodal Brain Tumor Segmentation (2014)Google Scholar
  28. 28.
    Selvakumar, J., Lakshmi, A., Arivoli, T.: Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and FUZZY C-mean algorithm. In: International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 186–190. IEEE (2012)Google Scholar
  29. 29.
    Singh, P., Bhadauria, H.S., Singh, A.: Automatic brain MRI image segmentation using FCM and LSM. In: 3rd International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), pp. 1–6. IEEE (2014)Google Scholar
  30. 30.
    Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: Proceedings of MICCAI BraTS (Brain Tumor Segmentation) Challenge, Winning Contribution, pp. 31–35 (2014 )Google Scholar
  31. 31.
    Vaishnavee, K.B., Amshakala, K.: An automated MRI brain image segmentation and tumor detection using SOM-clustering and proximal support vector machine classifier. In: 2015 IEEE International Conference on Engineering and Technology (ICETECH), pp. 1–6. IEEE (2015)Google Scholar
  32. 32.
    Verma, N.K., Gupta, P., Agrawal, P., Cui, Y.: MRI brain image segmentation for spotting tumors using improved mountain clustering approach. In: Applied Imagery Pattern Recognition Workshop (AIPRW), pp. 1–8. IEEE (2009)Google Scholar
  33. 33.
    Xiao, Z., et al.: A deep learning-based segmentation method for brain tumor in MR images. In: 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), pp. 1–6. IEEE, October 2016Google Scholar
  34. 34.
    Yi, D., Zhou, M., Chen, Z., Gevaert, O.: 3-D convolutional neural networks for glioblastoma segmentation. arXiv preprint arXiv:1611.04534 [cs.CV], November 2016
  35. 35.
    Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115(2), 256–269 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hikmat Khan
    • 1
  • Syed Farhan Alam Zaidi
    • 2
  • Asad Safi
    • 3
    Email author
  • Shahab Ud Din
    • 3
  1. 1.Department of Computer ScienceCOMSATS UniversityIslamabadPakistan
  2. 2.Department of Computer Science and EngineeringChung-Ang UniversitySeoulSouth Korea
  3. 3.Faculty of Computer Information Science (CIS)Higher Colleges of Technology, Sharjah Women’s CampusSharjahUAE

Personalised recommendations