A Novel Feature Extraction Model to Enhance Underwater Image Classification

  • Muhammad IrfanEmail author
  • Jiangbin Zheng
  • Muhammad Iqbal
  • Muhammad Hassan Arif
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1187)


Underwater images often suffer from scattering and color distortion because of underwater light transportation characteristics and water impurities. Presence of such factors make underwater image classification task very challenging. We propose a novel classification convolution autoencoder (CCAE), which can classify large size underwater images with promising accuracy. CCAE is designed as a hybrid network, which combines benefits of unsupervised convolution autoencoder to extract non-trivial features and a classifier, for better classification accuracy. In order to evaluate classification accuracy of proposed network, experiments are conducted on Fish4Knowledge dataset and underwater synsets of benchmark ImageNet dataset. Classification accuracy, precision, recall and f1-score results are compared with state-of-the-art deep convolutional neural network (CNN) methods. Results show that proposed system can accurately classify large-size underwater images with promising accuracy and outperforms state-of-the-art deep CNN methods. With the proposed network, we expect to advance underwater image classification research and its applications in many areas like ocean biology, sea exploration and aquatic robotics.


Convolutional autoencoder Deep learning Convolutional neural network Underwater images 


  1. 1.
    Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010(1), 1–14 (2010). 746052CrossRefGoogle Scholar
  2. 2.
    Anwar, S., Li, C., Porikli, F.: Deep Underwater Image Enhancement. CoRR abs/1807.03528 (2018). arXiv:1807.03528
  3. 3.
    Qin, H., et al.: DeepFish: accurate underwater live fish recognition with a deep architecture. Neurocomputing 187(C), 49–58 (2016)CrossRefGoogle Scholar
  4. 4.
    Sun, X., et al.: Transferring deep knowledge for object recognition in low-quality underwater videos. Neurocomputing 275(C), 897–908 (2018)CrossRefGoogle Scholar
  5. 5.
    Xu, Y., et al.: Underwater image classification using deep convolutional neural networks and data augmentation. In: 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–5 (2017)Google Scholar
  6. 6.
    Siddiqui, S.A., et al.: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 75(1), 374–389 (2017)CrossRefGoogle Scholar
  7. 7.
    Jin, L., Liang, H.: Deep learning for underwater image recognition in small sample size situations. In: OCEANS 2017, Aberdeen, pp. 1–4 (2017)Google Scholar
  8. 8.
    Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV 2015, pp. 1520–1528. IEEE Computer Society, Washington (2015)Google Scholar
  9. 9.
    Luo, W., et al.: Convolutional sparse autoencoders for image classification. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3289–3294 (2018)MathSciNetGoogle Scholar
  10. 10.
    Guo, Y., et al.: Deep learning for visual understanding. Neurocomputing 187(C), 27–48 (2016)CrossRefGoogle Scholar
  11. 11.
    Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011, part I. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). Scholar
  12. 12.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)Google Scholar
  14. 14.
    Boom, B.J., et al.: Supporting ground-truth annotation of image datasets using clustering. In: 2012 21st International Conference on Pattern Recognition (ICPR 2012), November 2012, pp. 1542–1545. IEEE Computer Society, Los Alamitos (2012)Google Scholar
  15. 15.
    He, K., et al.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). arXiv: 1512.03385
  16. 16.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016). arXiv:1608. 06993
  17. 17.
    Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014). arXiv: 1409.4842
  18. 18.
    Chollet, F.: Xception: deep learning with depthwise separable convolutions. CoRR abs/1610.02357 (2016). arXiv: 1610.02357
  19. 19.
    Zhang, C., et al.: Deep sparse autoencoder for feature extraction and diagnosis of locomotive adhesion status. J. Control. Sci. Eng. 2018, 8676387:1–8676387:9 (2018)zbMATHGoogle Scholar
  20. 20.
    Yanming, G., et al.: A review of semantic segmentation using deep neural networks. Int. J. Multimedia Inf. Retrieval 7(2), 87–93 (2018)CrossRefGoogle Scholar
  21. 21.
    Baldi, P.: Autoencoders, unsupervised learning and deep architectures. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop - Volume 27, UTLW 2011, Washington, USA, pp. 37–50. (2011)Google Scholar
  22. 22.
    Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)Google Scholar
  23. 23.
    Luo, W., et al.: Convolutional sparse autoencoders for image classification. IEEE Trans. Neural Netw. Learn. Syst. 29, 3289–3294 (2018)MathSciNetGoogle Scholar
  24. 24.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRefGoogle Scholar
  25. 25.
    Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018Google Scholar
  26. 26.
    Guo, X., et al.: Deep clustering with convolutional autoencoders. In: ICONIP (2017)Google Scholar
  27. 27.
    Vincent, P., et al.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, ICML 2008, pp. 1096–1103. ACM (2008)Google Scholar
  28. 28.
    Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop on Deep Learning for Audio, Speech and Language Processing (2013)Google Scholar
  29. 29.
    Santurkar, S., et al.: How does batch normalization help optimization? In: Bengio, S., et al. (eds.) Advances in Neural Information Processing Systems 31, pp. 2483–2493. Curran Associates Inc., (2018)Google Scholar
  30. 30.
    Jiuxiang, G., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77(C), 354–377 (2018)Google Scholar
  31. 31.
    Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. CoRR abs/1603.07285 (2016)Google Scholar
  32. 32.
    Chen, L.-C., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  33. 33.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., et al. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc., (2012)Google Scholar
  34. 34.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Muhammad Irfan
    • 1
    Email author
  • Jiangbin Zheng
    • 1
  • Muhammad Iqbal
    • 2
  • Muhammad Hassan Arif
    • 3
  1. 1.School of SoftwareNorthwestern Polytechnical UniversityXianChina
  2. 2.Faculty of Computer and Information ScienceHigher Colleges of TechnologyFujairahUAE
  3. 3.CESATIslamabadPakistan

Personalised recommendations