Advertisement

Perspectives on Industrial Symbiosis Implementation: Informational, Managerial, and IT Aspects

  • Linda Kosmol
  • Christian LeyhEmail author
Conference paper
  • 12 Downloads
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 380)

Abstract

Industrial symbiosis is a favored approach to balancing an industry’s economic growth with its environmental impact on a regional scale. Although the scientific literature reports numerous examples of industrial symbiosis around the world, this approach and its related concepts are not considered to be widespread in practice, due to various barriers.

Informational and managerial barriers are seen as significant obstacles to industrial symbiosis, but they have not yet been adequately investigated. Empirical research is needed to understand how industrial actors perceive these barriers, and especially supporting information technologies (IT). Therefore, in this paper, we first examine the barriers to industrial symbiosis through a literature review, focusing on informational and managerial barriers. In a second step, we develop a study involving an online questionnaire in order to investigate the extent of managerial and informational barriers that prevent industrial symbiosis, as well as the perception of corresponding IT support. Finally, we present the results of our pre-study.

Keywords

Industrial symbiosis Barriers Information Management IT 

References

  1. 1.
    Lo, S.-F., Sheu, H.-J.: Is corporate sustainability a value-increasing strategy for business? Corp. Gov. Int. Rev. 15, 345–358 (2007).  https://doi.org/10.1111/j.1467-8683.2007.00565.xCrossRefGoogle Scholar
  2. 2.
    Schaltegger, S.: Sustainability as a driver for corporate economic success: consequences for the development of sustainability management control. Soc. Econ. 33, 15–28 (2011).  https://doi.org/10.1556/SocEc.33.2011.1.4CrossRefGoogle Scholar
  3. 3.
    Leyh, C., Rossetto, M., Demez, M.: Sustainability management and its software support in selected Italian enterprises. Comput. Ind. 65, 386–392 (2014).  https://doi.org/10.1016/j.compind.2014.01.005CrossRefGoogle Scholar
  4. 4.
    Chertow, M.R.: Industrial symbiosis: literature and taxonomy. Annu. Rev. Energy Env. 25, 313–337 (2000).  https://doi.org/10.1146/annurev.energy.25.1.313CrossRefGoogle Scholar
  5. 5.
    Lombardi, D.R., Laybourn, P.: Redefining industrial symbiosis. JIE 16, 28–37 (2012).  https://doi.org/10.1111/j.1530-9290.2011.00444.xCrossRefGoogle Scholar
  6. 6.
    Gibbs, D., Deutz, P.: Reflections on implementing industrial ecology through eco-industrial park development. J. Clean. Prod. 15, 1683–1695 (2007).  https://doi.org/10.1016/j.jclepro.2007.02.003CrossRefGoogle Scholar
  7. 7.
    Susur, E., Hidalgo, A., Chiaroni, D.: A strategic niche management perspective on transitions to eco-industrial park development: a systematic review of case studies. Resour. Conserv. Recycl. 140, 338–359 (2019).  https://doi.org/10.1016/j.resconrec.2018.06.002CrossRefGoogle Scholar
  8. 8.
    Neves, A., Godina, R., Azevedo, S.G., Matias, J.C.O.: A comprehensive review of industrial symbiosis. J. Cleaner Prod. 247, 119113 (2019).  https://doi.org/10.1016/j.jclepro.2019.119113. Corrected ProofCrossRefGoogle Scholar
  9. 9.
    Sakr, D., Baas, L., El-Haggar, S., Huisingh, D.: Critical success and limiting factors for eco-industrial parks: global trends and Egyptian context. J. Clean. Prod. 19, 1158–1169 (2011).  https://doi.org/10.1016/j.jclepro.2011.01.001CrossRefGoogle Scholar
  10. 10.
    Golev, A., Corder, G.D., Giurco, D.P.: Barriers to industrial symbiosis: insights from the use of a maturity grid. J. Ind. Ecol. 19, 141–153 (2015).  https://doi.org/10.1111/jiec.12159CrossRefGoogle Scholar
  11. 11.
    Lombardi, R.: Non-technical barriers to (and drivers for) the circular economy through industrial symbiosis: a practical input. Econ. Policy Energy Environ. (2017).  https://doi.org/10.3280/EFE2017-001009
  12. 12.
    Grant, G.B., Seager, T.P., Massard, G., Nies, L.: Information and communication technology for industrial symbiosis. JIE 14, 740–753 (2010).  https://doi.org/10.1111/j.1530-9290.2010.00273.xCrossRefGoogle Scholar
  13. 13.
    van Capelleveen, G., Amrit, C., Yazan, D.M.: A literature survey of information systems facilitating the identification of industrial symbiosis. In: Otjacques, B., Hitzelberger, P., Naumann, S., Wohlgemuth, V. (eds.) From Science to Society. PI, pp. 155–169. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65687-8_14CrossRefGoogle Scholar
  14. 14.
    Maqbool, A., Mendez Alva, F., Van Eetvelde, G.: An assessment of European information technology tools to support industrial symbiosis. Sustainability 11, 131 (2018).  https://doi.org/10.3390/su11010131CrossRefGoogle Scholar
  15. 15.
    Chertow, M., Park, J.: Scholarship and practice in industrial symbiosis: 1989–2014. In: Clift, R., Druckman, A. (eds.) Taking Stock of Industrial Ecology, pp. 87–116. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-20571-7_5CrossRefGoogle Scholar
  16. 16.
    Menato, S., Carimati, S., Montini, E., Innocenti, P., Canetta, L., Sorlini, M.: Challenges for the adoption of industrial symbiosis approaches within industrial agglomerations. In: 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1293–1299. IEEE, Funchal (2017).  https://doi.org/10.1109/ICE.2017.8280029
  17. 17.
    Siskos, I., Wassenhove, L.N.V.: Synergy management services companies: a new business model for industrial park operators. J. Ind. Ecol. 21, 802–814 (2017).  https://doi.org/10.1111/jiec.12472CrossRefGoogle Scholar
  18. 18.
    Bacudio, L.R., et al.: Analyzing barriers to implementing industrial symbiosis networks using DEMATEL. Sustain. Prod. Consum. 7, 57–65 (2016).  https://doi.org/10.1016/j.spc.2016.03.001CrossRefGoogle Scholar
  19. 19.
    Promentilla, M.A.B., et al.: Problematique approach to analyse barriers in implementing industrial ecology in Philippine industrial parks. Chem. Eng. Trans. 52, 811–816 (2016).  https://doi.org/10.3303/CET1652136CrossRefGoogle Scholar
  20. 20.
    Ceglia, D., de Abreu, M.C.S., Da Silva Filho, J.C.L.: Critical elements for eco-retrofitting a conventional industrial park: social barriers to be overcome. J. Environ. Manag. 187, 375–383 (2017).  https://doi.org/10.1016/j.jenvman.2016.10.064CrossRefGoogle Scholar
  21. 21.
    Fric, U., Rončević, B.: E-Simbioza – leading the way to a circular economy through industrial symbiosis in Slovenia. Soc. Ekol. 27, 119–140 (2018).  https://doi.org/10.17234/SocEkol.27.2.1CrossRefGoogle Scholar
  22. 22.
    Kurdve, M., Jönsson, C., Granzell, A.-S.: Development of the urban and industrial symbiosis in western Mälardalen. Procedia CIRP 73, 96–101 (2018).  https://doi.org/10.1016/j.procir.2018.03.321CrossRefGoogle Scholar
  23. 23.
    Ormazabal, M., Prieto-Sandoval, V., Puga-Leal, R., Jaca, C.: Circular economy in Spanish SMEs: challenges and opportunities. J. Clean. Prod. 185, 157–167 (2018).  https://doi.org/10.1016/j.jclepro.2018.03.031CrossRefGoogle Scholar
  24. 24.
    Domenech, T., Bleischwitz, R., Doranova, A., Panayotopoulos, D., Roman, L.: Mapping industrial symbiosis development in Europe_typologies of networks, characteristics, performance and contribution to the circular economy. Resour. Conserv. Recycl. 141, 76–98 (2019).  https://doi.org/10.1016/j.resconrec.2018.09.016CrossRefGoogle Scholar
  25. 25.
    Kosmol, L.: Sharing is caring - information and knowledge in industrial symbiosis: a systematic review. In: 2019 IEEE 21st Conference on Business Informatics (CBI), pp. 21–30. IEEE, Moscow (2019).  https://doi.org/10.1109/CBI.2019.00010
  26. 26.
    Kosmol, L., Leyh, C.: ICT usage in industrial symbiosis: problem identification and study design. In: Proceedings of the 14th Federated Conference on Computer Science and Information Systems, pp. 685–692. IEEE, Leipzig (2019).  https://doi.org/10.15439/2019F323
  27. 27.
    Yu, C., Davis, C., Dijkema, G.P.J.: Understanding the evolution of industrial symbiosis research: a bibliometric and network analysis (1997–2012). JIE 18, 280–293 (2014).  https://doi.org/10.1111/jiec.12073CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Zheng, H., Chen, B., Su, M., Liu, G.: A review of industrial symbiosis research: theory and methodology. Front. Earth Sci. 9, 91–104 (2015).  https://doi.org/10.1007/s11707-014-0445-8CrossRefGoogle Scholar
  29. 29.
    Mirata, M., Emtairah, T.: Industrial symbiosis networks and the contribution to environmental innovation: the case of the Landskrona industrial symbiosis programme. J. Clean. Prod. 13, 993–1002 (2005).  https://doi.org/10.1016/j.jclepro.2004.12.010CrossRefGoogle Scholar
  30. 30.
    Chertow, M.R.: “Uncovering” industrial symbiosis. JIE 11, 11–30 (2007).  https://doi.org/10.1162/jiec.2007.1110CrossRefGoogle Scholar
  31. 31.
    Massard, G., Erkman, S.: A regional industrial symbiosis methodology and its implementation in Geneva, Switzerland (2007)Google Scholar
  32. 32.
    Fraccascia, L., Mango, M., Albino, V.: Business models for industrial symbiosis: a guide for firms. Procedia Environ. Sci. Eng. Manag. 3, 83–93 (2016)Google Scholar
  33. 33.
    Boons, F., Spekkink, W., Mouzakitis, Y.: The dynamics of industrial symbiosis: a proposal for a conceptual framework based upon a comprehensive literature review. JCP 19, 905–911 (2011).  https://doi.org/10.1016/j.jclepro.2011.01.003CrossRefGoogle Scholar
  34. 34.
    Ghali, M.R., Frayret, J.-M., Robert, J.-M.: Green social networking: concept and potential applications to initiate industrial synergies. J. Clean. Prod. 115, 23–35 (2016).  https://doi.org/10.1016/j.jclepro.2015.12.028CrossRefGoogle Scholar
  35. 35.
    Lowe, E.A., Evans, L.K.: Industrial ecology and industrial ecosystems. J. Clean. Prod. 3, 47–53 (1995).  https://doi.org/10.1016/0959-6526(95)00045-GCrossRefGoogle Scholar
  36. 36.
    Park, H.-S., Rene, E.R., Choi, S.-M., Chiu, A.S.F.: Strategies for sustainable development of industrial park in Ulsan, South Korea—from spontaneous evolution to systematic expansion of industrial symbiosis. J. Environ. Manage. 87, 1–13 (2008).  https://doi.org/10.1016/j.jenvman.2006.12.045CrossRefGoogle Scholar
  37. 37.
    Ehrenfeld, J., Gertler, N.: Industrial ecology in practice: the evolution of interdependence at Kalundborg. J. Ind. Ecol. 1, 67–79 (1997).  https://doi.org/10.1162/jiec.1997.1.1.67CrossRefGoogle Scholar
  38. 38.
    Lowe, E.A.: Creating by-product resource exchanges: strategies for eco-industrial parks. J. Clean. Prod. 5, 57–65 (1997).  https://doi.org/10.1016/S0959-6526(97)00017-6CrossRefGoogle Scholar
  39. 39.
    Lowe, E.A., Moran, S.R., Holmes, D.B.: Fieldbook for the Development of Eco-Industrial Parks. Indigo Development, Oakland (1996)Google Scholar
  40. 40.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007).  https://doi.org/10.2753/MIS0742-1222240302CrossRefGoogle Scholar
  41. 41.
    Benedict, M., Kosmol, L., Esswein, W.: Designing industrial symbiosis platforms – from platform ecosystems to industrial ecosystems. In: Proceedings of the 22nd Pacific Asia Conference on Information Systems, Yokohama, Japan, pp. 26–30 (2018)Google Scholar
  42. 42.
    Isenmann, R.: Bringing together environmental informatics and industrial ecology – the role of ICT in industrial symbiosis projects. In: Wohlgemuth, V., Page, B., Voigt, K., Gesellschaft für Informatik (eds.) Environmental Informatics and Industrial Environmental Protection: Concepts, Methods and Tools, EnviroInfo 2009, pp. 213–216. Shaker, Berlin (2009)Google Scholar
  43. 43.
    Fettke, P.: State-of-the-art des state-of-the-art. Wirtschaftsinformatik 48, 257–266 (2006)CrossRefGoogle Scholar
  44. 44.
    Mayring, P.: Qualitative content analysis. Forum Qual. Soc. Res. 2, 1–10 (2000)Google Scholar
  45. 45.
    Kosmol, L., Otto, L.: Implementation barriers of industrial symbiosis: a systematic review. In: Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, pp. 6052–6060 (2020)Google Scholar
  46. 46.
    Stubbs, W.: Exploration of barriers to mainstreaming industrial ecosystems in Australia. PIE 8, 319 (2014).  https://doi.org/10.1504/PIE.2014.066814CrossRefGoogle Scholar
  47. 47.
    Aid, G., Eklund, M., Anderberg, S., Baas, L.: Expanding roles for the Swedish waste management sector in inter-organizational resource management. Resour. Conserv. Recycl. 124, 85–97 (2017).  https://doi.org/10.1016/j.resconrec.2017.04.007CrossRefGoogle Scholar
  48. 48.
    LeBlanc, R., Tranchant, C., Gagnon, Y., Côté, R.: Potential for eco-industrial park development in Moncton, New Brunswick (Canada): a comparative analysis. Sustainability 8, 472 (2016).  https://doi.org/10.3390/su8050472CrossRefGoogle Scholar
  49. 49.
    Madsen, J.K., Boisen, N., Nielsen, L.U., Tackmann, L.H.: Industrial symbiosis exchanges: developing a guideline to companies. Waste Biomass Valorization 6(5), 855–864 (2015).  https://doi.org/10.1007/s12649-015-9417-9CrossRefGoogle Scholar
  50. 50.
    Zhu, Q., Geng, Y., Sarkis, J., Lai, K.-H.: Barriers to promoting eco-industrial parks development in China: perspectives from senior officials at national industrial parks. J. Ind. Ecol. 19, 457–467 (2015)CrossRefGoogle Scholar
  51. 51.
    Fichtner, W., Tietze-Stöckinger, I., Frank, M., Rentz, O.: Barriers of interorganisational environmental management: two case studies on industrial symbiosis. Prog. Ind. Ecol. 2, 73–88 (2005).  https://doi.org/10.1504/PIE.2005.006778CrossRefGoogle Scholar
  52. 52.
    Mauthoor, S.: Uncovering industrial symbiosis potentials in a small island developing state: the case study of Mauritius. J. Clean. Prod. 147, 506–513 (2017).  https://doi.org/10.1016/j.jclepro.2017.01.138CrossRefGoogle Scholar
  53. 53.
    Van Beers, D., Corder, G., Bossilkov, A., Van Berkel, R.: Industrial symbiosis in the Australian minerals industry: the cases of Kwinana and Gladstone. J. Ind. Ecol. 11, 55–72 (2007).  https://doi.org/10.1162/jiec.2007.1161CrossRefGoogle Scholar
  54. 54.
    Teh, B.T., Ho, C.S., Matsuoka, Y., Chau, L.W., Gomi, K.: Determinant factors of industrial symbiosis: greening Pasir Gudang industrial park. IOP Conf. Ser. Earth Environ. Sci. (2014).  https://doi.org/10.1088/1755-1315/18/1/012162CrossRefGoogle Scholar
  55. 55.
    Patricio, J., Axelsson, L., Blomé, S., Rosado, L.: Enabling industrial symbiosis collaborations between SMEs from a regional perspective. J. Clean. Prod. 202, 1120–1130 (2018).  https://doi.org/10.1016/j.jclepro.2018.07.230CrossRefGoogle Scholar
  56. 56.
    Fraccascia, L., Yazan, D.M.: The role of online information-sharing platforms on the performance of industrial symbiosis networks. Resour. Conserv. Recycl. 136, 473–485 (2018).  https://doi.org/10.1016/j.resconrec.2018.03.009CrossRefGoogle Scholar
  57. 57.
    Kosmol, L., Esswein, W.: Capturing the complexity of industrial symbiosis. In: Bungartz, H.-J., Kranzlmüller, D., Weinberg, V., Weismüller, J., Wohlgemuth, V. (eds.) Advances and New Trends in Environmental Informatics. PI, pp. 183–197. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99654-7_12CrossRefGoogle Scholar
  58. 58.
    Halstenberg, F.A., Lindow, K., Stark, R.: Utilization of product lifecycle data from PLM systems in platforms for industrial symbiosis. Procedia Manuf. 8, 369–376 (2017).  https://doi.org/10.1016/j.promfg.2017.02.047CrossRefGoogle Scholar
  59. 59.
    Ghali, M.R., Frayret, J.-M.: Social semantic web framework for industrial synergies initiation. J. Ind. Ecol. 23, 726–738 (2018).  https://doi.org/10.1111/jiec.12814CrossRefGoogle Scholar
  60. 60.
    Wolf, A., Eklund, M., Söderström, M.: Towards cooperation in industrial symbiosis: considering the importance of the human dimension. Prog. Ind. Ecol. 2, 185–199 (2005).  https://doi.org/10.1504/PIE.2005.007187CrossRefGoogle Scholar
  61. 61.
    Yedla, S., Park, H.-S.: Eco-industrial networking for sustainable development: review of issues and development strategies. Clean Technol. Environ. Policy 19, 391–402 (2017).  https://doi.org/10.1007/s10098-016-1224-xCrossRefGoogle Scholar
  62. 62.
    Li, J., Pan, S.-Y., Kim, H., Linn, J.H., Chiang, P.-C.: Building green supply chains in eco-industrial parks towards a green economy: barriers and strategies. J. Environ. Manage. 162, 158–170 (2015).  https://doi.org/10.1016/j.jenvman.2015.07.030CrossRefGoogle Scholar
  63. 63.
    Walls, J.L., Paquin, R.L.: Organizational perspectives of industrial symbiosis: a review and synthesis. Organ. Environ. 28, 32–53 (2015).  https://doi.org/10.1177/1086026615575333CrossRefGoogle Scholar
  64. 64.
    Päivärinne, S., Hjelm, O., Gustafsson, S.: Excess heat supply collaborations within the district heating sector: drivers and barriers. J. Renew. Sustain. Energy 7, 033117 (2015).  https://doi.org/10.1063/1.4921759CrossRefGoogle Scholar
  65. 65.
    Pigosso, D.C.A., Schmiegelow, A., Andersen, M.M.: Measuring the readiness of SMEs for eco-innovation and industrial symbiosis: development of a screening tool. Sustainability 10, 2861 (2018).  https://doi.org/10.3390/su10082861CrossRefGoogle Scholar
  66. 66.
    Cecelja, F., et al.: e-Symbiosis: technology-enabled support for Industrial Symbiosis targeting Small and Medium Enterprises and innovation. J. Clean. Prod. 98, 336–352 (2015).  https://doi.org/10.1016/j.jclepro.2014.08.051CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technische Universität DresdenDresdenGermany

Personalised recommendations