Application of Metal Oxides Electrodes

  • Chikaodili Chukwuneke
  • Joshua O. Madu
  • Feyisayo V. AdamsEmail author
  • Oluwagbenga T. Johnson
Part of the Engineering Materials book series (ENG.MAT.)


The search for engineering materials that can withstand the high demands of the emerging technologies in the fields of bio-engineering, aerospace engineering, medicine, environmental protection, renewable energy and manufacturing industries continues to thrive and find relevance in the today’s world. Metal oxides-based electrodes possess exceptional properties which qualify them as suitable engineering materials with wide range of applications such as sensors, semiconductors, energy storage, lithium-ion batteries and solar cells. This paper focuses on the use of various metal oxide-based electrodes (metal oxide, transition metal oxide, mixed metal oxide, transition, and hybrid systems) and how they have improved certain parameters of energy storage such as life cycle, capacitance, nominal voltage in above mentioned application prospects. This paper describes the novel concept of lithium metal oxide electrode materials which are of value to researchers in developing high-energy and enhanced-cyclability electrochemical capacitors comparable to Li-ion batteries. In order to fully achieve the potential of metal oxide electrodes in the future, significant efforts need to be directed to producing low cost and environment-friendly materials.


  1. 1.
    A.K. Arora, V.S. Jaswal, K. Singh, R. Singh, Applications of metal/mixed metal oxides as photocatalyst: a review. Orient. J. Chem. 32(4), 2035–2042 (2016)CrossRefGoogle Scholar
  2. 2.
    A.I. Ayesh. Metal/metal-oxide nanoclusters for gas sensor applications. J. Nanomater. (2016).
  3. 3.
    J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16(1), 84 (2018)CrossRefGoogle Scholar
  4. 4.
    E. O’Sullivan, E.J. Calvo, Reactions at metal oxide electrodes, in Comprehensive Chemical Kinetics, and Undefined 1988 (Elsevier, Amsterdam, 1988)Google Scholar
  5. 5.
    R. White, J. Bockris, B. Conway, E. Yeager, Comprehensive Treatise of Electrochemistry. Vol. 8: Experimental Methods in Electrochemistry (1984)Google Scholar
  6. 6.
    P. Sun, Z. Deng, P. Yang, X. Yu, Y. Chen, Z. Liang, H. Meng, W. Xie, S. Tan, W. Mai,.“Freestanding CNT–WO3 hybrid electrodes for flexible asymmetric supercapacitors. J. Mater. Chem. A, 3, 12076 (2015). pubs.rsc.orgGoogle Scholar
  7. 7.
    S. Elhag, Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion (2017)Google Scholar
  8. 8.
    F. Blais, Review of 20 years of range sensor development. J. Electron. Imaging (2004), spiedigitallibrary.orgGoogle Scholar
  9. 9.
    P.S. Waggoner, H.G. Craighead, Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab. Chip. 7(10), 1238–1255 (2007)CrossRefGoogle Scholar
  10. 10.
    D. Grieshaber, R. Mackenzie, J. Voros, E. Reimhult, Electrochemical biosensors—sensor principles and architectures. Kunststoffe Int. 8(3), 1400–1458 (2008)Google Scholar
  11. 11.
    J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, H. Xu, J. Zhang, G. Li, Electrochemical sensors for clinic analysis. Sensors 8(4), 2043–2081 (2008)CrossRefGoogle Scholar
  13. 13.
    M.A. Morikawa, N. Kimizuka, M. Yoshihara, T. Endo, New colorimetric detection of glucose by means of electron-accepting indicators: ligand substitution of [Fe(acac)3-n(phen)n]n + complexes triggered by electron transfer from glucose oxidase. Chem.—A Eur. J. 8(24), 5580–5584 (2002)CrossRefGoogle Scholar
  14. 14.
    Y. Miwa, M. Nishizawa, T. Matsue, I. Uchida, A conductometric glucose sensor based on a twin-microband electrode coated with a polyaniline thin film. Bull. Chem. Soc. Japan 67(10), 2864–2866 (1994)CrossRefGoogle Scholar
  15. 15.
    S. Mansouri, J.S. Schultz, A miniature optical glucose sensor based on affinity binding. Nat. Biotechnol. 2(10), 885–890 (1984)CrossRefGoogle Scholar
  16. 16.
    N.D. Evans, D.J.S. Birch, O.J. Rolinski, J.C. Pickup, F. Hussain, Fluorescence-based glucose sensors. Biosens. Bioelectron. 20(12), 2555–2565 (2004)Google Scholar
  17. 17.
    Y.-B. Hahn, R. Ahmad, N. Tripathy, Chemical and biological sensors based on metal oxide nanostructures. Chem. Commun. 48, 10369–10385 (2012)CrossRefGoogle Scholar
  18. 18.
    M.M. Rahman, A.J.S. Ahammad, J. Jin, S.J. Ahn, J.-J. Lee, A Comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855–4886 (2010). Scholar
  19. 19.
    C. Espro, N. Donato, S. Galvagno, D. Alosiso, Salvatore G. Leonardi, G. Neri, CuO nanowires-based electrodes for glucose sensors. Chem. Eng. Transact. 41, 415–420 (2014)Google Scholar
  20. 20.
    C. Kong, L. Tang, X. Zhang, S. Sun, S. Yang, X. Song, Z. Yang, Templating synthesis of hollow CuO polyhedron and its application for one enzymatic glucose detection. J. Mater. Chem. A (2014). Scholar
  21. 21.
    M.-J. Song, S.-K. Lee, J.-H. Kim, D.-S. Lim, Non-enzymatic glucose sensor based on Cu electrode modified with CuO nanoflowers. J. Electrochem. Soc. 160, B43–B46 (2013)CrossRefGoogle Scholar
  22. 22.
    N.M. Ahmad, J. Abdullah, N.I. Ramli, S. Abd Rahman, N.E. Azmi, Z. Hamzah, A. Saat, N.H. Rahman, Characterization of ZrO2/PEG composite film as immobilization matrix for glucose oxidase. World Academy of Science. Eng. Technol. Int. J. Mater. Metall. Eng. 7, 8 (2013)Google Scholar
  23. 23.
    A.T.E. Viliana, S.-M. Chena, M.A. Ali, F.M.A. Al-Hemaid, Direct electrochemistry of glucose oxidase immobilized on ZrO2 nanoparticles decorated reduced graphene oxide sheets for a glucose biosensor. RSC Adv. 4, 30358–30367 (2014)CrossRefGoogle Scholar
  24. 24.
    B. Wang, S. Li, J. Liu, M. Yu, Preparation of nickel nanoparticle/graphene composites for non-enzymatic electrochemical glucose biosensor applications. Mater. Res. Bull. 49, 521–524 (2014)CrossRefGoogle Scholar
  25. 25.
    Z. Yang, Y. Xu, J. Li, Z. Jian, S. Yu, Y. Zhang, X. Hu, D.D. Dionysiou, An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods. Microchim. Acta 182(9–10), 1841–1848 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Haghighi, R. Hallaj, A. Salimi, Immobilization of glucose oxidase onto a novel platform based on modified TiO2 and graphene oxide, direct electrochemistry, catalytic and photocatalytic activity. Mater. Sci. Eng., C 73, 417–424 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Saha, S.K. Arya, S.P. Singh, B.D. Malhotra, K. Sreenivas, V. Gupta, Cerium oxide (CeO2) thin film for mediator-less glucose biosensors, in Materials Research Society Symposium Proceedings (2009)Google Scholar
  28. 28.
    D. Patil, N.Q. Dung, H. Jung, S.Y. Ahn, D.M. Jang, D. Kim, Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectr. 31(1), 176–181 (2012)Google Scholar
  29. 29.
    A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24(4), 676–683 (2008)CrossRefGoogle Scholar
  30. 30.
    Ç. Atan, E. Karaku, Novel zinc oxide nanorod and chitosan-based electrochemical glucose biosensors for glucose assay in human serum samples. Sens. Lett. 12(11), 1613–1619 (2014)CrossRefGoogle Scholar
  31. 31.
    Q. Ma, K. Nakazato, Low-temperature fabrication of ZnO nanorods/ferrocenyl–alkanethiol bilayer electrode and its application for enzymatic glucose detection. Biosens. Bioelectr. 51, 362–365 (2014)Google Scholar
  32. 32.
    M.I. Said, H. Azza, R. Fatma, A.M. Abdel-aal, Fabrication of novel electrochemical sensors based on modification with different polymorphs of MnO2 nanoparticles. RSC Adv. 8, 18698–18713 (2018)CrossRefGoogle Scholar
  33. 33.
    E.O. Fayemi, A.S. Adekunle, E.E. Ebenso, Metal oxide nanoparticles/multi-walled carbon nanotube nanocomposite modified electrode for the detection of dopamine: comparative electrochemical study. J. Biosens. Bioelectr. 6, 190 (2015). Scholar
  34. 34.
    M.J. Devine, H. Plun-Favreau, N.W. Wood, Parkinson’s disease and cancer: two wars, one front. Nat. Rev. Cancer 11(11), 812–823 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Shahrokhian, E. Asadian, Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J. Electroanal. Chem. 636(1–2), 40–46 (2009)CrossRefGoogle Scholar
  36. 36.
    H. Beitollahi, F. Garkani, Graphene oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode (2016), pp. 1–9Google Scholar
  37. 37.
    L. P. Martin, R. S. Glass, Hydrogen Sensor Based on YSZ Electrolyte and Tin-Doped Indium Oxide Electrode (2015), pp. 43–47Google Scholar
  38. 38.
    G. Lu, N. Miura, N. Yamazoe, High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens. Actuators B: Chem. 36, 130–135 (1996)Google Scholar
  39. 39.
    S. Ayu, M. Breedon, N. Miura, Sensing characteristics of aged zirconia-based hydrogen sensor utilizing Zn–Ta-based oxide sensing-electrode. Electrochem. Commun. 31, 133–136 (2013)Google Scholar
  40. 40.
    J. Yi, H. Zhang, Z. Zhang, D. Chen, Hierarchical porous hollow SnO2 nanofiber sensing electrode for high performance potentiometric H2 sensor. Sens. Actuators B Chem. 268, 456–464 (2018)CrossRefGoogle Scholar
  41. 41.
    Y. Li, X. Li, Z. Tang, J. Wang, J. Yu, Z. Tang, Potentiometric hydrogen sensors based on yttria-stabilized zirconia electrolyte (YSZ) and CdWO4 interface. Sens. Actuators B. Chem. 223, 365–371 (2016)CrossRefGoogle Scholar
  42. 42.
    S.A. Anggraini, M. Breedon, N. Miura, Effect of sintering temperature on hydrogen sensing characteristics of zirconia sensor utilizing Zn–Ta–O-based sensing electrode. J. Electrochem. Soc. 160(9), B164–B169 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Yu, J. Yang, Z. Tang, Z. Tang, J. Wang, X. Li, Mixed potential hydrogen sensor using ZnWO4 sensing electrode. Sens. Actuators B Chem. 195, 520–525 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Zhang, J. Yi, X. Jiang, Fast response, highly sensitive and selective mixed-potential H2 sensor based on (La, Sr)(Cr, Fe)O3-δ perovskite sensing electrode. ACS Appl. Mater. Interfaces. 3–10 (2017)Google Scholar
  45. 45.
    Y. Li, X. Li, Z. Tang, Z. Tang, J. Yu, J. Wang, Hydrogen sensing of the mixed-potential-type MnWO4/YSZ/Pt sensor. Sens. Actuators, B Chem. 206, 176–180 (2015)CrossRefGoogle Scholar
  46. 46.
    N. Miura, T. Sato, S.A. Anggraini, A review of mixed-potential type zirconia-based gas sensors. Ionics 20, 901–925 (2014)Google Scholar
  47. 47.
    J.W. Yoon, M.L. Grilli, E. Di Bartolomeo, R. Polini, E. Traversa, The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes. Sens. Actuators B: Chem. 76(2), 483–488 (2001)Google Scholar
  48. 48.
    W. Xiong, G.M. Kale, Electrochemical NO2 sensor using a NiFe1.9Al0.1O4 oxide spinel electrode. Anal. Chem. 79(10), 3561–3567 (2007)CrossRefGoogle Scholar
  49. 49.
    N. Miura, J. Wang, M. Nakatou, P. Elumalai, S. Zhuiykov, M. Hasei, High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode. Sens. Actuators B Chem. 114(2), 903–909 (2006)CrossRefGoogle Scholar
  50. 50.
    A. Morata, J.P. Viricelle, A. Taranc, Development and characterisation of a screen-printed mixed potential gas sensor. Sens. Actuators B: Chem. 130, 561–566 (2008)Google Scholar
  51. 51.
    Y. Fujio, V.V. Plashnitsa, M. Breedon, N. Miura, Construction of sensitive and selective zirconia-based CO sensors using ZnCr2O4-based sensing electrodes. Langmuir 28(2), 1638–1645 (2012)CrossRefGoogle Scholar
  52. 52.
    B. Sljuki, C.E. Banks, A. Crossley, R.G. Compton, Lead (IV) oxide—graphite composite electrodes: application to sensing of ammonia, nitrite and phenols. Analytica Chimica Acta 587, 240–246 (2007)Google Scholar
  53. 53.
    K. Singh, A.A. Ibrahim, A. Umar, A. Kumar, G.R. Chaudhary, S. Singh, S.K. Mehta, Synthesis of CeO2–ZnO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. Sens. Actuators B Chem. 202, 1044–1050 (2014)Google Scholar
  54. 54.
    Z. Liu, J. Du, C. Qiu, L. Huang, H. Ma, D. Shen, Y. Ding, Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun. 11(7), 1365–1368 (2009)CrossRefGoogle Scholar
  55. 55.
    N. Lezi, A. Economou, J. Barek, M. Prodromidis, Screen-printed disposable sensors modified with bismuth precursors for rapid voltammetric determination of 3 ecotoxic nitrophenols. Electroanalysis 26, 766–775 (2014)Google Scholar
  56. 56.
    M.M. Rahman, S.B. Khan, A.M. Asiri, A.G. Al-Sehemi, Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochim. Acta 112, 422–430 (2013)CrossRefGoogle Scholar
  57. 57.
    J. Wu, Q. Wang, A. Umar, S. Sun, L. Huang, J. Wang, Y. Gao, Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO2 nanotubes. New J. Chem. 38(9), 4420–4426 (2014)CrossRefGoogle Scholar
  58. 58.
    M.M. Rahman, G. Gruner, M.S. Al-Ghamdi, M.A. Daous, S.B. Khan, A.M. Asiri, Chemo-sensors development based on low-dimensional codoped Mn2O3–ZnO nanoparticles using flat-silver electrodes. Chem. Cent. J. 7(1), 60 (2013)CrossRefGoogle Scholar
  59. 59.
    M. Abaker G.N. Dar, A.A. Umar, S.A. Zaidi, A.A. Ibrahim, S. Baskoutas, A. Al-Hajry, CuO nanocubes based highly-sensitive 4-nitrophenol chemical sensor. Sci. Adv. Mater. 4(8), 893–900 (2012)Google Scholar
  60. 60.
    Y. Haldorai, K. Giribabu, S. Hwang, C.H. Kwak, Y.S. Huh, Y.-K. Han, Facile synthesis of α-MnO2 nanorod/graphene nanocomposite paper electrodes using a 3D precursor for supercapacitors and sensing platform to detect 4-nitrophenol. Electrochim. Acta 222, 717–727 (2016)CrossRefGoogle Scholar
  61. 61.
    T. Kooyers, W. Westerhof, Toxicology and health risks of hydroquinone in skin lightening formulations. J. Eur. Acad. Dermatol. Venereol. (2005)Google Scholar
  62. 62.
    M.U.A. Prathap, B. Satpati, R. Srivastava, Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sens. Actuators B Chem. 186, 67–77 (2013)CrossRefGoogle Scholar
  63. 63.
    T. Gan, J. Sun, K. Huang, L. Song, Y. Li, A graphene oxide–mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sens. Actuators B Chem. 177, 412–418 (2013)CrossRefGoogle Scholar
  64. 64.
    A. Umar, A. Al-Hajry, R. Ahmad, S.G. Ansari, M.S. Al-Assiri, H. Algarni, Fabrication and characterization of a highly sensitive hydroquinone chemical sensor based on iron-doped ZnO nanorods. Dalt. Trans. 44(48), 21081–21087 (2015)CrossRefGoogle Scholar
  65. 65.
    S. Ameen, M.S. Akhtar, H. Shik, Highly dense ZnO nanowhiskers for the low level detection of p-hydroquinone. Mater. Lett. 1–5 (2015)Google Scholar
  66. 66.
    B. Unnikrishnan, P. Ru, S. Chen, Electrochemically synthesized Pt–MnO2 composite particles for simultaneous determination of catechol and hydroquinone. Sens. Actuators B. Chem. 169, 235–242 (2012)CrossRefGoogle Scholar
  67. 67.
    L. Yang, H. Zhao, S. Fan, B. Li, C. Li, A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle@TiO2 functionalized SiC. Anal. Chim. Acta 852, 28–36 (2014)CrossRefGoogle Scholar
  68. 68.
    S. Erogul, S.Z. Bas, M. Ozmen, S. Yildiz, A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim. Acta 186, 302–313 (2015)CrossRefGoogle Scholar
  69. 69.
    S. Hilliard, G. Baldinozzi, D. Friedrich, S. Kressman, H. Strub, V. Artero, C. Laberty-Robert, Mesoporous thin film WO3 photoanode for photoelectrochemical water splitting: a sol–gel dip coating approach. Sustain. Energy Fuels 1, 145–153 (2017)CrossRefGoogle Scholar
  70. 70.
    M. Kitano, K. Tsujimaru, M. Anpo, Hydrogen production using highly active titanium oxide-based photocatalysts. Top. Catal. 49(1–2), 4–17 (2008)CrossRefGoogle Scholar
  71. 71.
    A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)CrossRefGoogle Scholar
  72. 72.
    Y. Wang, C. Sun, X. Zhao, B. Cui, Z. Zeng, A. Wang, G. Liu, H. Cui, The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res. Lett. 11(1), 529 (2016)CrossRefGoogle Scholar
  73. 73.
    H.N. Guan, D.F. Chi, J. Yu, X.C. Li, A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. P-B. Physiol. 92(2), 83–91 (2008)Google Scholar
  74. 74.
    D.C. Lim, J.H. Jeong, K. Hong, S. Nho, J.-Y. Lee, Q.V. Hoang, S.K. Lee, K. Pyo, D. Lee, S. Cho, Semi-transparent plastic solar cell based on oxide-metal-oxide multilayer electrodes. Prog. Photovoltaics Res. Appl. 26(3), 188–195 (2018)CrossRefGoogle Scholar
  75. 75.
    M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1), 72–88 (2013)CrossRefGoogle Scholar
  76. 76.
    V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl. Surf. Sci. 255(7), 4192–4196 (2009)CrossRefGoogle Scholar
  77. 77.
    D. Yan, Z. Guo, G. Zhu, Z. Yu, H. Xu, A. Yu, MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J. Power Sources 199, 409–412 (2012)CrossRefGoogle Scholar
  78. 78.
    U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl. Surf. Sci. 255(5, part 2), 2603–2607 (2008)Google Scholar
  79. 79.
    X.C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4), 3206–3213 (2012)CrossRefGoogle Scholar
  80. 80.
    J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, C. Shao, Y. Liu, Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior. J. Colloid Interface Sci. 356(2), 706–712 (2011)CrossRefGoogle Scholar
  81. 81.
    X. Zhang, W. Shi, J. Zhu, D.J. Kharistal, W. Zhao, B.S. Lalia, H.H. Hng, Q. Yan, High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 5(3), 2013–2019 (2011)CrossRefGoogle Scholar
  82. 82.
    C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J. Mater. Chem. 22(36), 19161 (2012)CrossRefGoogle Scholar
  83. 83.
    X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, P. Chen, Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2(10), 4364 (2012)CrossRefGoogle Scholar
  84. 84.
    X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, Z.L. Wang, WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 24(7), 938–944 (2012)CrossRefGoogle Scholar
  85. 85.
    X. Liu, N. Zhang, J. Ni, L. Gao, Improved electrochemical performance of sol-gel method prepared Na4Mn9O18 in aqueous hybrid Na-ion supercapacitor. J. Solid State Electrochem. 17(7), 1939–1944 (2013)CrossRefGoogle Scholar
  86. 86.
    P. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors. ACS Nano 4(8), 4403–4411 (2010)CrossRefGoogle Scholar
  87. 87.
    L.J. Hannah, Climate Change Biology (Academic Press, Cambridge, 2010). ISBN 978-0-12-420218-4
  88. 88.
    J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, S. Nowak, L.I. Cekic, M. Winter, Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions. J. Power Sources 359, 458–467 (2017)CrossRefGoogle Scholar
  89. 89.
    J. Mao, J. Iocozzia, J. Huang, K. Meng, Y. Lai, Z. Lin, Graphene aerogels for efficient energy storage and conversion. E. & E. Sci. 11(4), 772–799 (2018)Google Scholar
  90. 90.
    D. Cericola, P. Ruch, R. Kötz, P. Novák, A. Wokaun, Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications. J. Power Sources 195(9), 2731–2736 (2010)CrossRefGoogle Scholar
  91. 91.
    M. Stoller, R. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. E. & E. Sci. 3(9), 1294 (2010)Google Scholar
  92. 92.
    H. Jiang, J. Ma, C. Li, Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 24(30), 4197–4202 (2012)CrossRefGoogle Scholar
  93. 93.
    S.P.S. Badwal, S.S. Giddey, C. Munnings, A.I. Bhatt, A.F. Hollenkamp, Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2 (2014)Google Scholar
  94. 94.
    A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5(19), 1402115 (2015)CrossRefGoogle Scholar
  95. 95.
    H. Zhang, H. Zhao, M. Khan, W. Zou, J. Xu, L. Zhang, J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A, 6(42), 20564–20620 (2018)Google Scholar
  96. 96.
    Z. Wang, L. Zhou, X.W. David Lou, Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24(14), 1903–1911 (2012)Google Scholar
  97. 97.
    X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRefGoogle Scholar
  98. 98.
    J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012)CrossRefGoogle Scholar
  99. 99.
    M. Notarianni, J. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–96 (2016)Google Scholar
  100. 100.
    B. Li, X. Shao, Y. Hao, Y. Zhao, Ultrasonic-spray-assisted synthesis of metal oxide hollow/mesoporous microspheres for catalytic CO oxidation. RSC Adv. 5(104), 85640–85645 (2015)CrossRefGoogle Scholar
  101. 101.
    F. Cheng, J. Chen, Transition metal vanadium oxides and vanadate materials for lithium batteries. J. Mater. Chem. 21(27), 9841 (2011)CrossRefGoogle Scholar
  102. 102.
    X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, et al., Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale 6(10), 5008–5048 (2014)Google Scholar
  103. 103.
    S. Yan, K. Abhilash, L. Tang, M. Yang, Y. Ma, Q. Xia, Q. Guo, H. Xia, Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 1804371 (2018)Google Scholar
  104. 104.
    C.M. Julien, A. Mauger, Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials 7(11), 396 (2017)CrossRefGoogle Scholar
  105. 105.
    B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)Google Scholar
  106. 106.
    P. Polzot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batterles. Nat. Publ. Gr. 407(6803), 496–499 (2000)Google Scholar
  107. 107.
    J. Chen, L. Archer, X.L. Wen (David), SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. M. Chem. 21(27), 9912 (2011)Google Scholar
  108. 108.
    Y. Li, J. Shi, Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv. Mater. 26(20), 3176–3205 (2014)CrossRefGoogle Scholar
  109. 109.
    B. Zhao, L.C. Lee, L. Yang, A.J. Pearson, H. Lu, X.J. She, L. Cui, K.H.L. Zhang, R.L.Z. Hoye, A. Karani, P. Xu, A. Sadhanala, N.C. Greenham, R.H. Friend, J.L. MacManus-Driscoll, D. Di, In situ atmospheric deposition of ultrasmooth nickel oxide for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 10(49), 41849–41854 (2018)CrossRefGoogle Scholar
  110. 110.
    W. Chen, Y. Qiu, Y. Zhong, K.S. Wong, S. Yang, High-efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods. J. Phys. Chem. A 114(9), 3127–3138 (2010)CrossRefGoogle Scholar
  111. 111.
    W. Chen, Y. Qiua, S. Yang, A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Phys. Chem. Chem. Phys. 12, 9494–9501 (2010)CrossRefGoogle Scholar
  112. 112.
    Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45(25), L638–L640 (2006)Google Scholar
  113. 113.
    T. Hu, T. Becker, N. Pourdavoud, J. Zhao, K.O. Brinkmann, R. Heiderhoff, T. Gahlmann, Z. Huang, S. Olthof, K. Meerholz, D. Többens, B. Cheng, Y. Chen, T. Riedl, Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers. Adv. Mater. 29(27), 1606656 (2017)CrossRefGoogle Scholar
  114. 114.
    X. Zhang, C. Hägglund, M.B. Johansson, K. Sveinbjörnsson, E.M.J. Johansson, Fine tuned nanolayered metal/metal oxide electrode for semitransparent colloidal quantum dot solar cells. Adv. Funct. Mater. 26(12), 1921–1929 (2016)CrossRefGoogle Scholar
  115. 115.
    K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn, T. Riedl, Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv. Funct. Mater. 24(12), 1671–1678 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chikaodili Chukwuneke
    • 1
  • Joshua O. Madu
    • 1
  • Feyisayo V. Adams
    • 1
    • 2
    Email author
  • Oluwagbenga T. Johnson
    • 2
    • 3
  1. 1.Department of Petroleum ChemistryAmerican University of NigeriaYolaNigeria
  2. 2.Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfonteinSouth Africa
  3. 3.Department of Mining and Metallurgical EngineeringUniversity of NamibiaWindhoekNamibia

Personalised recommendations