Advancement in Ultrasonic Machining for 3D Profile Cutting

  • S. DasEmail author
  • S. Kumar
  • G. Kibria
  • B. Doloi
  • B. Bhattacharyya
Part of the Materials Forming, Machining and Tribology book series (MFMT)


Hard and fragile materials for example ceramics, glass and quartz crystals are getting extra consideration in modern years owing to their higher characteristics for example high strength, high hardness, chemical durability and low density. Ultrasonic machining is an abrasive based advanced machining with non-chemical, non-electrical and non-thermal process that is particularly suitable for those brittle and hard materials. The USM process principle, mechanism of material removal, varieties of USM set up, tool development of USM process, improvement and production of 3d profile by USM process and various research issues are studied and summarized in this chapter. It also highlights the effects of different parameters of USM process on performance and development of USM process.


Ultrasonic machining Profile accuracy Ceramics Surface roughness Material removal rate 


  1. 1.
    Pandey PC, Shan HS (1980) Modern machinig processes. Tata McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Doyle LE, Keyser CE, Leach JL, Schrader GF, Singer MS (1985) Manufacturing processes and materials for engineers. Prentice-Hall. Engle-wood Cliffs, NJGoogle Scholar
  3. 3.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science. An introduction to materials in medicine, 2nd edn. Elsevier Academic Press, San Diego, p 162Google Scholar
  4. 4.
    Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38:239–255CrossRefGoogle Scholar
  5. 5.
    Rozenberg LD (1973) Physical principles of ultrasonic technology. Ultrason Technol 1:7–20Google Scholar
  6. 6.
    Mishra PK (2005) Non conventional machining. Narosa Publishing House, New Delhi, pp 22–44Google Scholar
  7. 7.
    Benedict GF (1987) Non traditional manufacturing processes. Manufacturing engineering and materials processing, vol 19. Marcel Dekker. Inc., New York, pp 67–86Google Scholar
  8. 8.
    Kremer D, Saleh SM, Ghabrial SR, Moisan A (1981) The state of the art of ultrasonic machining. CIRP Ann—Manufacturing Technol 30:107–110Google Scholar
  9. 9.
    Evans AG (1974) Fracture mechanics determinations. Fracture mechanics of ceramics, vol 1. Plenum Press, New York, pp 17–48Google Scholar
  10. 10.
    Stevens R (1986) Zirconia and zirconia ceramics, 2nd edn. Magnesium Elektron Ltd.Google Scholar
  11. 11.
    Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25CrossRefGoogle Scholar
  12. 12.
    Boutin P, Christel P, Dorlot JM, Meunier A, De Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J (1988) The use of dense alumina–alumina ceramic combination in total hip replacement. J Biomed Mater Res 22:1203–1232CrossRefGoogle Scholar
  13. 13.
    Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151CrossRefGoogle Scholar
  14. 14.
    Rodriguez-Lorenzo LM, Vallet-Regi M, Ferreira JMF (2001) Colloidal processing of hydroxyapatite. Biomaterials 22:1847–1852CrossRefGoogle Scholar
  15. 15.
    Thamaraiselvi TV, Rajeswari S (2004) Biological evaluation of bioceramic materials—A review. Trends Biomater & Artif Organs 18:9–17Google Scholar
  16. 16.
    Shaw MC (1956) Ultrasonic grinding. Ann CIRP 5:25–53Google Scholar
  17. 17.
    Miller GE (1957) Special theory of ultrasonic machining. J Appl Phys 28:149–156CrossRefGoogle Scholar
  18. 18.
    Rozenberg LD, Kazantsev VF, Makarov LO (1964) Ultrasonic cutting. Consultant Bureau, pp 97–102Google Scholar
  19. 19.
    Cook NH (1966) Manufacturing analysis. Addison-Wesley, pp 133–148Google Scholar
  20. 20.
    Kainth GS, Nandy A, Singh K (1979) On the mechanisms of material removal in ultrasonic machining. Int J Mach Tool Des 19:33–41CrossRefGoogle Scholar
  21. 21.
    Nair EV, Ghosh A (1985) A fundamental approach to the study of mechanics of ultrasonic machining. Int J Prod Res 23:731–753CrossRefGoogle Scholar
  22. 22.
    Rajurkar KP, Wang ZY, Kuppattan A (1999) Micro removal of ceramic material (Al2O3) in the precision ultrasonic machining. Precis Eng 23:73–78CrossRefGoogle Scholar
  23. 23.
    Lee TC, Chan CW (1997) Mechanism of the ultrasonic machining of ceramic Composites. J Mater Process Technol 71:195–201CrossRefGoogle Scholar
  24. 24.
    Wiercigroch M, Neilson RD, Player MA (1999) Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Phys Lett A 259:91–96CrossRefGoogle Scholar
  25. 25.
    Nath C, Lim GC, Zheng HY (2012) Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52:605–613CrossRefGoogle Scholar
  26. 26.
    Ichida Y, Sato R, Morimoto Y, Kobayashi K (2005) Material removal mechanisms in non-contact ultrasonic abrasive machining. Wear 258:107–114CrossRefGoogle Scholar
  27. 27.
    Lee BJ, Kim KE (2009) Characteristics of micro-hole machining of Al2O3 ceramics by ultrasonic longitudinal vibration. J Ceram Process Res 10(4):482–490Google Scholar
  28. 28.
    Egashira K, Masuzawa T (1999) Microultrasonic machining by the application of workpiece vibration. CIRP Ann—Manufacturing Technol 48(1):131–134Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Das
    • 1
    Email author
  • S. Kumar
    • 2
  • G. Kibria
    • 3
  • B. Doloi
    • 2
  • B. Bhattacharyya
    • 2
  1. 1.Mechanical Engineering DepartmentSwami Vivekananda Institute of Science and TechnologyKolkataIndia
  2. 2.Production Engineering DepartmentJadavpur UniversityKolkataIndia
  3. 3.Department of Mechanical EngineeringNew Town Campus, Aliah UniversityKolkataIndia

Personalised recommendations