Optimal Control Strategy for Nonlinear Vibration of Beam Structures

  • Jiao JiangEmail author
  • Changzheng Chen
  • Lei Bo
  • Zhong Wang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1146)


Beam structure is the most basic component or component in construction engineering. The research on beam structure is not only of great theoretical and engineering significance, but also can provide some reference for the study of plate and complex structure. In addition, the beam structure is also considered as the solidification model of the pipeline, and the in-depth study of the beam structure is helpful to solve the pipeline problem. Therefore, this paper takes the cantilever structure as an example to study its non-linear vibration system, and puts forward the corresponding optimal control strategy.


Beam structure Non-linear vibration Optimal control Strategy research 


  1. 1.
    Liao, H.T., Li, M.Y., Zhao, Q.Y., Huang, J.P., Fu, M.: Leaf disc. Review of frequency domain analysis methods for structural nonlinear vibration. Aviat. Sci. Technol. 29(09), 1–10 (2018)Google Scholar
  2. 2.
    Xiao, W., Huo, R.D., Li, H.C., Gao, S.Y., Pang, F.Z.: Application of improved fourier method in vibration analysis of beam structures. Noise Vib. Control 39(01), 10–15 (2018)Google Scholar
  3. 3.
    He, L.L., Guo, Q.G., Zhou, X.L., Yuan, D.X.: Robust active control optimization of cantilever beam structural vibration system. Highw. Transp. Sci. Technol. 34(08), 145–151 (2017)Google Scholar
  4. 4.
    Zhang, P.F., Fu, W., Su, H.C., Wu, J.J.: Structural nonlinear parameter identification based on random vibration response. Spacecr. Environ. Eng. 34(06), 604–610 (2017)Google Scholar
  5. 5.
    Zhao, B.B., Huang, C.H., Jin, B., Wen, W.: The influence of temperature variation on the nonlinear vibration and characteristics of different boundary beams. Q. J. Mech. 38(03), 496–502 (2017)Google Scholar
  6. 6.
    Zhang, W., Chen, Y., Cao, D.X.: Computation of normal forms for eight-dimensional nonlinear dynamical system and application to a viscoelastic moving belt. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 35–58 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nazemnezhad, R., Hosseini-Hashemi, S.: Nonlocal nonlinear free vibration of functionally graded nanobeams. Compos. Struct. 110(110), 192–199 (2014)CrossRefGoogle Scholar
  8. 8.
    Wu, Q.X., Wang, W.P., Chen, B.C.: Finite element analysis for nonlinear vibration of cable-beam structure. Eng. Mech. 30(3), 288–347 (2013)Google Scholar
  9. 9.
    Seunghye, L., Minhee, S., Ki, Y.B., Jin, W., Jeong, S., Myung, K., Jaehong, L.: Experimental study of two-way beam string structures. Eng. Struct. 191, 563–574 (2019)CrossRefGoogle Scholar
  10. 10.
    Zhang, Q.C., Tian, R.L., Li, X.T.: General program of calculating the simplest normal forms for high-dimensional nonlinear dynamical systems. J. Vib. Eng. 21(5), 436–440 (2008). (in Chinese)Google Scholar
  11. 11.
    Li, F.M., Sun, C.C., Wang, Y.Z., Huang, W.H.: Vibration stability of the parametrically excited nonlinear piezoelectric beams. J. Vib. Eng. 21(5), 441–445 (2008). (in Chinese)Google Scholar
  12. 12.
    Chen, Z., Xue, D.Y., Hao, L.N., Xu, X.H.: On the optimal control of active vibration of a smart piezoelectric cantilever beam. J. Northeast. Univ. (Nat. Sci.) 31(11), 1550–1553 (2010). (in Chinese)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jiao Jiang
    • 1
    • 2
    Email author
  • Changzheng Chen
    • 1
  • Lei Bo
    • 3
  • Zhong Wang
    • 4
  1. 1.School of Mechanical EngineeringShenyang University of TechnologyShenyangChina
  2. 2.Institute of Intelligent EngineeringShenyang City UniversityShenyangChina
  3. 3.Shenyang Blower Group Co., Ltd.ShenyangChina
  4. 4.Liaoning Institute of Science and TechnologyBenxiChina

Personalised recommendations