Advertisement

An Operation Method for Uplink Science Meta Data Transmission Based on Satellite-to-Ground Large-Loop Comparison

  • Tao XiEmail author
  • Jiancheng Li
  • Jun Wei
  • Heng Wang
  • Nengjian Tai
  • Hongjian Guo
  • Yaruixi Gao
  • Shaoyu Zhang
Conference paper
  • 17 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1146)

Abstract

The distribution of satellite-to-ground secret key is an important experiment for some Science experiments satellite. To finish the secret key distribution experiment, it is necessary for the satellite and ground to interact and cooperate with each other to complete information exchange for uplink and downlink science meta data transmission for 8 times in 24 h. In view of the strict constraint to ground system, the requirement of high reliability, particularly the new challenge to ground system that uplink science meta data transmission function is required, this paper put forward an operation method for uplink science meta data transmission based on satellite-to-ground large-loop comparison to effectively cooperate with the secret key distribution experiment, designed the information interface between systems and accomplished the scientific experiment task quickly and efficiently by optimizing the experiment flow.

Keywords

Science experiments satellite Key distribution Satellite-to-ground large-loop Uplink science Meta data transmission operation 

References

  1. 1.
    Liao, S.-K., Cai, W.-Q., et al.: Satellite-to-ground quantum secret key distribution. Nature 549, 43–47 (2017)CrossRefGoogle Scholar
  2. 2.
    Liao, S.-K., Cai, W.-Q., et al.: Satellite relayed international quantum network. Phys. Rev. Lett. 120, 030501 (2018)CrossRefGoogle Scholar
  3. 3.
    Xu, P., Ma, Y., Ren, J.-G.: Satellite testing of a gravitationally induced quantum decoherence model. Science 366, 132–135 (2019)CrossRefGoogle Scholar
  4. 4.
    Han, X., Yong, H.-L., Xu, P.: Point-ahead demonstration of a transmitting antenna for satellite quantum communication. Opt. Express 26(13), 17044–17055 (2018)CrossRefGoogle Scholar
  5. 5.
    Radio Frequency and Modulation Systems—Part 1 Earth Stations and Spacecraft. CCSDS401.0-B (2011)Google Scholar
  6. 6.
    Kinman, P.W., Berner, J.B.: Carrier synchronization of offset QPSK for deep space telemetry. In: IEEE Aerospace Conference, pp. 1327–1336 (2002)Google Scholar
  7. 7.
    Xiong, W.: Design of a high rate uplink for a science experiment satellite. J. Spacecr. TT&C Technol. 32(6), 518–523 (2013). (in Chinese)Google Scholar
  8. 8.
    CCSDS 732.0-B-2: AOS space data link protocol. CCSDS Secretarial, Washington D.C. (2006)Google Scholar
  9. 9.
    Wang, Z., Xiing, W.: Physical layer design of microwave communication link for quantum science experiment satellite. Chin. J. Sci. 37(4), 490–498 (2017). (in Chinese)Google Scholar
  10. 10.
    Zhang, Q., Goebel, A.: Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006)CrossRefGoogle Scholar
  11. 11.
    Yin, J., Ren, J.-G., Lu, H.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185–188 (2012)CrossRefGoogle Scholar
  12. 12.
    Neumann, S.P., Joshi, S.K., Fink, M.: Q3Sat: quantum Communications uplink to a 3U CubeSat—feasibility & design. EPJ Quantum Technol. 5, 1–24 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tao Xi
    • 1
    Email author
  • Jiancheng Li
    • 1
  • Jun Wei
    • 1
  • Heng Wang
    • 1
  • Nengjian Tai
    • 1
  • Hongjian Guo
    • 1
  • Yaruixi Gao
    • 1
  • Shaoyu Zhang
    • 1
  1. 1.State Key Laboratory of Astronautic DynamicsXi’anChina

Personalised recommendations