Preconditioned Jacobi SVD Algorithm Outperforms PDGESVD

  • Martin Bečka
  • Gabriel OkšaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12043)


Recently, we have introduced a new preconditioner for the one-sided block-Jacobi SVD algorithm. In the serial case it outperformed the simple driver routine DGESVD from LAPACK. In this contribution, we provide the numerical analysis of applying the preconditioner in finite arithmetic and compare the performance of our parallel preconditioned algorithm with the procedure PDGESVD, the ScaLAPACK counterpart of DGESVD. Our Jacobi based routine remains faster also in the parallel case, especially for well-conditioned matrices.


Singular value decomposition Parallel computation Dynamic ordering One-sided block-Jacobi algorithm Preconditioning 



Authors were supported by the VEGA grant no. 2/0004/17.


  1. 1.
    Anderson, A., et al.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  2. 2.
    Bečka, M., Okša, G., Vidličková, E.: New preconditioning for the one-sided block-Jacobi SVD algorithm. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 590–599. Springer, Cham (2018). Scholar
  3. 3.
    Bečka, M., Okša, G., Vajteršic, M.: Dynamic ordering for a parallel block Jacobi SVD algorithm. Parallel Comput. 28, 243–262 (2002). Scholar
  4. 4.
    Bečka, M., Okša, G., Vajteršic, M.: New dynamic orderings for the parallel one-sided block-Jacobi SVD algorithm. Parallel Proc. Lett. 25, 1–19 (2015). Scholar
  5. 5.
    Bečka, M., Okša, G.: Parallel one-sided Jacobi SVD algorithm with variable blocking factor. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 57–66. Springer, Heidelberg (2014). Scholar
  6. 6.
    Dongarra, J., et al.: The singular value decomposition: anatomy of optimizing an algorithm for extreme scale. SIAM Rev. 60, 808–865 (2018). Scholar
  7. 7.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 4th edn. The John Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  8. 8.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)CrossRefGoogle Scholar
  9. 9.
    Jia, Z.: Using cross-product matrices to compute the SVD. Numer. Algorithms 42, 31–61 (2006). Scholar
  10. 10.
    Kudo, S., Yamamoto, Y., Bečka, M., Vajteršic, M.: Performance analysis and optimization of the parallel one-sided block-Jacobi algorithm with dynamic ordering and variable blocking. Concurr. Comput. Pract. Exp. 29, 1–24 (2017). Scholar
  11. 11.
    Nakatsukasa, Y., Higham, N.J.: Stable and efficient spectral divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVD. SIAM J. Sci. Comput. 35, 1325–1349 (2013). Scholar
  12. 12.
    Okša, G., Yamamoto, Y., Vajteršic, M.: Asymptotic quadratic convergence of the block-Jacobi EVD algorithm for Hermitian matrices. Numer. Math. 136, 1071–1095 (2017). Scholar
  13. 13.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of MathematicsSlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations