Advertisement

Parallel Processing of Images Represented by Linguistic Description in Databases

  • Danuta RutkowskaEmail author
  • Krzysztof Wiaderek
Conference paper
  • 121 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12043)

Abstract

This paper concerns an application of parallel processing to color digital images characterized by linguistic description. Attributes of the images are considered with regard to fuzzy and rough set theories. Inference is based on the CIE chromaticity color model and granulation approach. By use of the linguistic description represented in databases, and the rough granulation, the problem of image retrieval and classification is presented.

Keywords

Parallel processing Image processing Linguistic description Databases Fuzzy and rough sets Information granulation CIE chromaticity color model 

References

  1. 1.
    Alain, K.M., Nathanael, K.M., Rostin, M.M.: Integrating fuzzy concepts to design a fuzzy data warehouse. Int. J. Comput. 27(1), 112–132 (2017)Google Scholar
  2. 2.
    Bello, R., Falcon, R., Pedrycz, W., Kacprzyk, J. (eds.): Granular Computing: At the Junction of Rough Sets and Fuzzy Sets. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-76973-6CrossRefGoogle Scholar
  3. 3.
    Buckles, B.P., Petry, F.E.: Extending the fuzzy database with fuzzy numbers. Inform. Sci. 34(2), 145–155 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cao, J.-J., Fan, S.-S., Yang, X.: SPMD performance analysis with parallel computing of MATLAB. In: Proceedings of the 2012 Fifth International Conference on Intelligent Networks and Intelligent Systems, pp. 80–83. IEEE (2012)Google Scholar
  5. 5.
    Cesario, E., Talia, D.: From parallel data mining to grid-enabled distributed knowledge discovery. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 25–36. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72530-5_3CrossRefGoogle Scholar
  6. 6.
    De, S.K., Biswas, R., Roy, A.R.: On extended fuzzy relational database model with proximity relations. Fuzzy Sets Syst. 117(2), 195–201 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Devi, V.S., Meena, L.: Parallel MCNN (PMCNN) with application to prototype selection on large and streaming data. J. Artif. Intell. Soft Comput. Res. 7(3), 155–169 (2017)CrossRefGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  9. 9.
    Fortner, B.: Number by color. Part 5. SciTech J. 6, 30–33 (1996)Google Scholar
  10. 10.
    Pal, S.K., Meher, S.K., Dutta, S.: Class-dependent rough-fuzzy granular space, dispersion index and classification. Pattern Recognit. 45, 2690–2707 (2012) CrossRefGoogle Scholar
  11. 11.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  12. 12.
    Pawlak, Z.: Rough set theory and its applications. J. Telecommun. Inf. Tech. 3, 7–10 (2002)Google Scholar
  13. 13.
    Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, vol. 1, pp. 106–110 (1998)Google Scholar
  14. 14.
    Pedrycz, W., Park, B.J., Oh, S.K.: The design of granular classifiers: a study in the synergy of interval calculus and fuzzy sets in pattern recognition. Pattern Recognit. 41, 3720–3735 (2008)CrossRefGoogle Scholar
  15. 15.
    Rakus-Andersson, E.: Approximation and rough classification of letter-like polygon shapes. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems, pp. 455–474. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-30341-8_24CrossRefzbMATHGoogle Scholar
  16. 16.
    Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-7908-1802-4CrossRefzbMATHGoogle Scholar
  17. 17.
    Skowron, A., Stepaniuk, J.: Information granules: towards foundations of granular computing. Int. J. Intell. Syst. 16(1), 57–85 (2001)CrossRefGoogle Scholar
  18. 18.
    Wiaderek, K.: Fuzzy sets in colour image processing based on the CIE chromaticity triangle. In: Rutkowska, D., Cader, A., Przybyszewski, K. (eds.) Selected Topics in Computer Science Applications, pp. 3–26. Academic Publishing House EXIT, Warsaw (2011)Google Scholar
  19. 19.
    Wiaderek, K., Rutkowska, D.: Fuzzy granulation approach to color digital picture recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 412–425. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38658-9_37CrossRefGoogle Scholar
  20. 20.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Color digital picture recognition based on fuzzy granulation approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 319–332. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07173-2_28CrossRefGoogle Scholar
  21. 21.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Information granules in application to image recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015, Part I. LNCS (LNAI), vol. 9119, pp. 649–659. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19324-3_58CrossRefGoogle Scholar
  22. 22.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: New algorithms for a granular image recognition system. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016, Part II. LNCS (LNAI), vol. 9693, pp. 755–766. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_67CrossRefGoogle Scholar
  23. 23.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Linguistic description of color images generated by a granular recognition system. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, Part I, pp. 603–615. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59063-9_54
  24. 24.
    Wiaderek, K., Rutkowska, D.: Linguistic description of images based on fuzzy histograms. In: Choraś, M., Choraś, R.S. (eds.) IP&C 2017. AISC, vol. 681, pp. 27–34. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-68720-9_4CrossRefGoogle Scholar
  25. 25.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Parallel processing of color digital images for linguistic description of their content. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017, Part I. LNCS, vol. 10777, pp. 544–554. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78024-5_47CrossRefGoogle Scholar
  26. 26.
    Wiaderek, K., Rutkowska, D., Rakus-Andersson, E.: Image retrieval by use of linguistic description in databases. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018, Part II. LNCS (LNAI), vol. 10842, pp. 92–103. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91262-2_9CrossRefGoogle Scholar
  27. 27.
    Wolkenhauer, O.: Possibility Theory with Applications to Data Analysis. UMIST Control Systems Centre Series. Wiley, New York (1998)zbMATHGoogle Scholar
  28. 28.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  29. 29.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  30. 30.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Information Technology InstituteUniversity of Social SciencesLodzPoland
  2. 2.Institute of Computer and Information SciencesCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations