Advertisement

Parallel Computations for Various Scalarization Schemes in Multicriteria Optimization Problems

  • Victor GergelEmail author
  • Evgeny Kozinov
Conference paper
  • 138 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12043)

Abstract

In the present paper, a novel approach to parallel computations for solving time-consuming multicriteria global optimization problems is presented. This approach includes various methods for the scalarization of vector criteria, dimensionality reduction with the use of the Peano space-filling curves, and efficient global search algorithms. The applied criteria scalarization methods can be altered in the course of computations in order to better meet the stated optimality requirements. To reduce the computational complexity of multicriteria problems, the methods developed feature an extensive use of all the computed optimization information and are well parallelized for effective performance on high-performance computing systems. Numerical experiments confirmed the efficiency of the developed approach.

Keywords

Multicriteria optimization Criteria scalarization Global optimization Parallel computations 

References

  1. 1.
    Marler, R.T., Arora, J.S.: Multi-Objective Optimization: Concepts and Methods for Engineering. VDM Verlag, Saarbrücken (2009)Google Scholar
  2. 2.
    Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2010).  https://doi.org/10.1007/3-540-27659-9CrossRefzbMATHGoogle Scholar
  3. 3.
    Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies. Decision Engineering. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-662-08883-8CrossRefzbMATHGoogle Scholar
  4. 4.
    Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer Optimization and Its Applications, vol. 123. Springer, Cham (2017)CrossRefGoogle Scholar
  5. 5.
    Modorskii, V.Y., Gaynutdinova, D.F., Gergel, V.P., Barkalov, K.A.: Optimization in design of scientific products for purposes of cavitation problems. In: AIP Conference Proceedings, vol. 1738, p. 400013 (2016).  https://doi.org/10.1063/1.4952201
  6. 6.
    Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making. In: Malyshkin, V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 76–88. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45145-7_7CrossRefGoogle Scholar
  7. 7.
    Gergel, V., Kozinov, E.: Efficient methods of multicriterial optimization based on the intensive use of search information. In: Kalyagin, V.A., Nikolaev, A.I., Pardalos, P.M., Prokopyev, O.A. (eds.) NET 2016. SPMS, vol. 197, pp. 27–45. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56829-4_3CrossRefGoogle Scholar
  8. 8.
    Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: AIP Conference Proceedings, vol. 1738, p. 400006 (2016)Google Scholar
  9. 9.
    Gergel, V., Kozinov, E.: Efficient multicriterial optimization based on intensive reuse of search information. J. Global Optim. 71(1), 73–90 (2018).  https://doi.org/10.1007/s10898-018-0624-3MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Strongin, R., Sergeyev, Ya.: Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2nd edn. 2013, 3rd edn. 2014)Google Scholar
  11. 11.
    Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. SpringerBriefs in Optimization. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-8042-6CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer Optimization and Its Applications. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-74740-8CrossRefzbMATHGoogle Scholar
  13. 13.
    Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. SIAM, Philadelphia (2013)CrossRefGoogle Scholar
  14. 14.
    Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press, Princeton (2016)Google Scholar
  15. 15.
    Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 505–515. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_49CrossRefGoogle Scholar
  16. 16.
    Gergel, V., Kozinov, E.: Parallel computing for time-consuming multicriterial optimization problems. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 446–458. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62932-2_43CrossRefGoogle Scholar
  17. 17.
    Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Global Optim. 66(1), 35–51 (2015).  https://doi.org/10.1007/s10898-015-0355-7MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations