A High-Performance Implementation of a Robust Preconditioner for Heterogeneous Problems

  • Linus SeelingerEmail author
  • Anne Reinarz
  • Robert Scheichl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12043)


We present an efficient implementation of the highly robust and scalable GenEO (Generalized Eigenproblems in the Overlap) preconditioner [16] in the high-performance PDE framework DUNE [6]. The GenEO coarse space is constructed by combining low energy solutions of a local generalised eigenproblem using a partition of unity. The main contribution of this paper is documenting the technical details that are crucial to the efficiency of a high-performance implementation of the GenEO preconditioner. We demonstrate both weak and strong scaling for the GenEO solver on over 15, 000 cores by solving an industrially motivated problem in aerospace engineering. Further, we show that for highly complex parameter distributions arising in certain real-world applications, established methods become intractable while GenEO remains fully effective.


Partial differential equations Domain decomposition Preconditioning High performance computing 



This work was supported by an EPSRC Maths for Manufacturing grant (EP/K031368/1). This research made use of the Balena High Performance Computing Service at the University of Bath. This work used the ARCHER UK National Supercomputing Service (


  1. 1.
    Alnæs, M.S., et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015). Scholar
  2. 2.
    Alzetta, G., et al.: The deal.II library version 9.0. J. Numer. Math. 26(4), 173–183 (2018). Scholar
  3. 3.
    Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bastian, P., Blatt, M.: On the generic parallelisation of iterative solvers for the finite element method. Int. J. Comput. Sci. Eng. 4(1), 56–69 (2008)Google Scholar
  5. 5.
    Bastian, P., et al.: A generic grid interface for parallel and adaptive scientific computing. Part ii. Implementation and tests in dune. Computing 82(2–3), 121–138 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika 46(2), 294–315 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Butler, R., Dodwell, T., Reinarz, A., Sandhu, A., Scheichl, R., Seelinger, L.: Dune-composites - an open source, high performance package for solving large-scale anisotropic elasticity problems. arXiv e-prints arXiv:1901.05188 (January 2019)
  8. 8.
    Chung, E., Efendiev, Y., Tat Leung, W., Ye, S.: Generalized multiscale finite element methods for space-time heterogeneous parabolic equations. Comput. Math. Appl. 76(2), 419–437 (2016). Scholar
  9. 9.
    Jolivet, P., Hecht, F., Nataf, F., Prud’homme, C.: Scalable domain decomposition preconditioners for heterogeneous elliptic problems. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 80:1–80:11. SC 2013. ACM, New York (2013).
  10. 10.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users guide: solution of large scale eigenvalue problems by implicitly restarted Arnoldi methods (1997)Google Scholar
  11. 11.
    Pechstein, C., Dohrmann, C.R.: A unified framework for adaptive BDDC. Electron. Trans. Numer. Anal. 46, 273–336 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Reinarz, A., Dodwell, T., Fletcher, T., Seelinger, L., Butler, R., Scheichl, R.: Dune-composites - a new framework for high-performance finite element modelling of laminates. Compos. Struct. 184, 269–278 (2018)CrossRefGoogle Scholar
  13. 13.
    Sandhu, A., Reinarz, A., Dodwell, T.: A bayesian framework for assessing the strength distribution of composite structures with random defects. Compos. Struct. 205, 58–68 (2018). Scholar
  14. 14.
    Smith, B.F., Bjørstad, P.E., Gropp, W.: Domain Decomposition. Cambridge University Press, Cambridge (1996). includes bibliographical referenceszbMATHGoogle Scholar
  15. 15.
    Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2014). Scholar
  16. 16.
    Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two-level domain decomposition preconditioner for systems of PDEs. C. R. Math. 349(23–24), 1255–1259 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer Series in Computational Mathematics. Springer, Heidelberg (2005). Scholar
  18. 18.
    Yang, U.M., Henson, V.E.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Scientific ComputingHeidelberg UniversityHeidelbergGermany
  2. 2.Department of InformaticsTechnical University of MunichGarchingGermany
  3. 3.Institute for Applied MathematicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations