Advertisement

Electronic and Optical Properties of Carbon Nanotubes Directed to Their Applications in Solar Cells

  • Jacek WojtkiewiczEmail author
  • Bartosz Brzostowski
  • Marek Pilch
Conference paper
  • 108 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12044)

Abstract

We calculate electronic and optical properties of a series of finite carbon nanotubes. Where available, our calculations exhibit good consistency with experimental data. Our study is directed towards potential application of carbon nanotubes in solar cells, constructed in a layer architecture.

Keywords

Carbon nanotubes Photovoltaics DFT calculations 

Notes

Acknowledgment

We are grateful to anonymous referee for questions, remarks and constructive criticism.

References

  1. 1.
  2. 2.
    Janssen, R.A.J., Nelson, J.: Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013).  https://doi.org/10.1002/adma.201202873CrossRefGoogle Scholar
  3. 3.
    Scharber, M.C., Sariciftci, N.S.: Efficiency of bulk-heterojunction solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013).  https://doi.org/10.1016/j.progpolymsci.2013.05.001CrossRefGoogle Scholar
  4. 4.
    Heeger, A.J.: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001). https://doi.org/10.1002/1521-3773(20010716)40:14$<$2591::AID-ANIE2591$>$3.0.CO;2-0
  5. 5.
    Lunt, R.R., Holmes, R.J.: Small-molecule and vapor-deposited organic photovoltaics. In: Rand, B.P., Richter, H. (eds.) Organic Solar Cells: Fundamentals, Devices, and Upscaling. CRC Press, Taylor & Francis Group, Boca Raton (2014).  https://doi.org/10.4032/9789814463669CrossRefGoogle Scholar
  6. 6.
    Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).  https://doi.org/10.1063/1.96937CrossRefGoogle Scholar
  7. 7.
    Chu, C.W., Shao, Y., Shrotriya, V., Yang, Y.: Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl. Phys. Lett. 86, 243506 (2005).  https://doi.org/10.1063/1.1946184CrossRefGoogle Scholar
  8. 8.
    Terao, Y., Sasabe, H., Adachi, C.: Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Appl. Phys. Lett. 90, 103515 (2007).  https://doi.org/10.1063/1.2711525CrossRefGoogle Scholar
  9. 9.
    Xue, J., Uchida, S., Rand, B.P., Forrest, S.R.: Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85, 5757–5759 (2004).  https://doi.org/10.1063/1.1829776CrossRefGoogle Scholar
  10. 10.
    Yu, G., Heeger, A.J.: Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J. Appl. Phys. 78, 4510–4515 (1995).  https://doi.org/10.1063/1.359792CrossRefGoogle Scholar
  11. 11.
    Halls, J.J.M., et al.: Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).  https://doi.org/10.1038/376498a0CrossRefGoogle Scholar
  12. 12.
    Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells - enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).  https://doi.org/10.1126/science.270.5243.1789CrossRefGoogle Scholar
  13. 13.
    Yang, C.Y., Heeger, A.J.: Morphology of composites of semiconducting polymers mixed with C\(_{60}\). Synth. Met. 83, 85–88 (1996).  https://doi.org/10.1016/S0379-6779(97)80058-6CrossRefGoogle Scholar
  14. 14.
    Collins, S.D., Ran, N.A., Heiber, M.C., Nguyen, T.-Q.: Small is powerful: recent progress in solution-processed small molecule solar cells. Adv. Energy Mater. 7(10), 1602242 (2017).  https://doi.org/10.1002/aenm.201602242CrossRefGoogle Scholar
  15. 15.
    Moritsubo, S., et al.: Exciton diffusion in air-suspended single-walled CNTs. Phys. Rev. Lett. 104, 247402 (2010).  https://doi.org/10.1103/PhysRevLett.104.247402CrossRefGoogle Scholar
  16. 16.
    Yoshikawa, K., Matsuda, K., Kanemitsu, Y.: Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy. J. Phys. Chem. C 114, 4353–4356 (2010).  https://doi.org/10.1021/jp911518hCrossRefGoogle Scholar
  17. 17.
    Sgobba, V., Guldi, D.M.: Carbon nanotubes as integrative materials for organic photovoltaic devices. J. Mater. Chem. 18, 153–157 (2008).  https://doi.org/10.1039/B713798MCrossRefGoogle Scholar
  18. 18.
    Fox, M.: Optical Properties of Solids. Clarendon Press, Oxford (2010)Google Scholar
  19. 19.
    Kataura, H., et al.: Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999).  https://doi.org/10.1016/S0379-6779(98)00278-1CrossRefGoogle Scholar
  20. 20.
    Baker, B.A., Zhang, H., Cha, T.-G., Choi, J.H.: Carbon nanotubes sollar cells. In: Yamashita, S., Saito, Y., Choi, J.H. (eds.) Carbon Nanotubes and Graphene for Photonic Applications. Woodhead Publishing Series in Electronic and Optical Materials, pp. 241–269. Woodhead Publishing, Cambridge (2013)CrossRefGoogle Scholar
  21. 21.
    Cataldo, S., Menna, E., Salice, P., Pignataro, B.: Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5(3), 5919–5940 (2012).  https://doi.org/10.1039/C1EE02276HCrossRefGoogle Scholar
  22. 22.
    Kymakis, E., Amaratunga, G.A.J.: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002).  https://doi.org/10.1063/1.1428416CrossRefGoogle Scholar
  23. 23.
    Lee, U.J.: Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87, 073101 (2005).  https://doi.org/10.1063/1.2010598CrossRefGoogle Scholar
  24. 24.
    Pradhan, B., Batabyal, S.K., Pal, A.J.: Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl. Phys. Lett. 88, 093106 (2006).  https://doi.org/10.1063/1.2179372CrossRefGoogle Scholar
  25. 25.
    Kymakis, E., Amaratunga, G.A.J.: Carbon nanotubes as electron acceptors in polymeric photovoltaics. Rev. Adv. Mater. Sci. 10, 300–305 (2005)Google Scholar
  26. 26.
    Spataru, C.D., Ismail-Beigi, S., Capaz, R.B., Louie, S.G.: Quasiparticle and excitonic effects in the optical response of nanotubes and nanoribbons. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds.) Carbon Nanotubes. TAP, vol. 111, pp. 195–228. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72865-8_6CrossRefGoogle Scholar
  27. 27.
    Spataru, C.D., Ismail-Beigi, S., Benedict, L.X., Louie, S.G.: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl. Phys. A 78, 1129–1136 (2004).  https://doi.org/10.1007/s00339-003-2464-2CrossRefGoogle Scholar
  28. 28.
    Frisch, M.J., et al.: Gaussian 09, Revision A.02. Gaussian Inc., Wallingford (2009)Google Scholar
  29. 29.
    Piela, L.: Ideas of Quantum Chemistry. Elsevier, Amsterdam (2019)Google Scholar
  30. 30.
    Soler, J.M., et al.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002).  https://doi.org/10.1088/0953-8984/14/11/302CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Institute of PhysicsUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations