Advertisement

Overlapping Schwarz Preconditioner for Fourth Order Multiscale Elliptic Problems

  • Leszek MarcinkowskiEmail author
  • Talal Rahman
Conference paper
  • 26 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12044)

Abstract

In this paper, a domain decomposition parallel preconditioner for the 4th order multiscale elliptic problem in 2D with highly heterogeneous coefficients is constructed. The problem is discretized by the conforming \(C^1\) reduced Hsieh-Tough-Tocher (HCT) macro element. The proposed preconditioner is based on the classical overlapping Schwarz method and is constructed using an abstract framework of the Additive Schwarz Method. The coarse space consists of multiscale finite element functions associated with the edges and is enriched with functions based on solving carefully constructed generalized eigenvalue problems locally on each edge. The convergence rate of the Preconditioned Conjugate Method of our method is independent of the variations in the coefficients for a sufficient number of eigenfunctions in the coarse space.

Keywords

Fourth order problem Finite element method Domain Decomposition Method Additive Schwarz Method Abstract coarse space 

References

  1. 1.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, Second edn. Springer, New York (2002).  https://doi.org/10.1007/978-1-4757-3658-8CrossRefGoogle Scholar
  2. 2.
    Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, vol. II, pp. 17–351, North-Holland, Amsterdam (1991)Google Scholar
  3. 3.
    Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal. 46(5), 1175–1199 (2012).  https://doi.org/10.1051/m2an/2011073MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Efendiev, Y., Galvis, J., Vassilevski, P.S.: Spectral element agglomerate algebraic multigrid methods for elliptic problems with high-contrast coefficients. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX. LNCSE, vol. 78, pp. 407–414. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-11304-8_47CrossRefzbMATHGoogle Scholar
  5. 5.
    Gander, M.J., Loneland, A., Rahman, T.: Analysis of a new harmonically enriched multiscale coarse space for domain decompostion methods. Eprint arXiv:1512.05285 (2015). https://arxiv.org/abs/1512.05285
  6. 6.
    Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007).  https://doi.org/10.1007/s00211-007-0074-1MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, vol. 95. Springer, New York (1994).  https://doi.org/10.1007/978-3-319-28483-5. Translated and revised from the 1991 German originalCrossRefzbMATHGoogle Scholar
  8. 8.
    Le Tallec, P., Mandel, J., Vidrascu, M.: A Neumann-Neumann domain decomposition algorithm for solving plate and shell problems. SIAM J. Numer. Anal. 35(2), 836–867 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pechstein, C.: Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems. LNCSE, vol. 90. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-23588-7CrossRefzbMATHGoogle Scholar
  10. 10.
    Pechstein, C., Scheichl, R.: Analysis of FETI methods for multiscale PDEs. Numer. Math. 111(2), 293–333 (2008).  https://doi.org/10.1007/s00211-008-0186-2MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Scheichl, R., Vainikko, E.: Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients. Computing 80(4), 319–343 (2007).  https://doi.org/10.1007/s00607-007-0237-zMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  13. 13.
    Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps. Numer. Math. 126(4), 741–770 (2014).  https://doi.org/10.1007/s00211-013-0576-yMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Toselli, A., Widlund, O.: Domain Decomposition Methods–Algorithms and Theory. SSCM, vol. 34. Springer, Berlin (2005).  https://doi.org/10.1007/b137868CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mathematics, Informatics, and MechanicsUniversity of WarsawWarszawaPoland
  2. 2.Department of Computing, Mathematics, and PhysicsWestern Norway University of Applied SciencesBergenNorway

Personalised recommendations