Advertisement

A Link Analysis Based Approach to Predict Character Death in Game of Thrones

  • Swati AgarwalEmail author
  • Rahul Thakur
  • Sudeepta Mishra
Conference paper
  • 42 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 309)

Abstract

Mysterious and uncertain deaths in the “Game of Thrones” novel-series have been stupefying to the vast pool of readers and hence interested researchers to come up with various models to predict the deaths. In this paper, we propose a Death-Prone Score model to predict if the candidate character is going to die or stay alive in the upcoming book in the series. We address the challenge of high-dimensional data and train our model on the most significant attributes by computing feature importance in the vector space. Further, we address the challenge of multiple interactions between characters and create a social network representing the weighted similarity between each character pair in the book. The proposed model takes similarity and proximity in a social network into account and generates a death-prone score for each character. To evaluate our model, we divide the characters data into training (characters died before year 300) and testing (characters died in the year 300 and characters alive till year 300). Our results show that the proposed Death-Prone Score model achieves an f-score of 86.2%.

Keywords

Character similarity Death prediction Feature importance Game of Thrones Social network analysis Weighted vector space model 

References

  1. 1.
    Athey, S., Tibshirani, J., Wager, S., et al.: Generalized random forests. Ann. Stat. 47(2), 1148–1178 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beveridge, A., Shan, J.: Network of thrones. Math Horiz. 23(4), 18–22 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boldi, P., Santini, M., Vigna, S.: PageRank as a function of the damping factor. In: Proceedings of the 14th International Conference on World Wide Web, pp. 557–566. ACM, New York (2005)Google Scholar
  4. 4.
    Bonato, A., D’Angelo, D.R., Elenberg, E.R., Gleich, D.F., Hou, Y.: Mining and modeling character networks. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 100–114. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49787-7_9CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, S.: Dynamic personalized pagerank in entity-relation graphs. In: Proceedings of the 16th International Conference on WWW, pp. 571–580 (2007)Google Scholar
  6. 6.
    Farine, D.R.: When to choose dynamic vs. static social network analysis. J. Anim. Ecol. 87(1), 128–138 (2018) CrossRefGoogle Scholar
  7. 7.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)CrossRefGoogle Scholar
  8. 8.
    Haghani, S., Keyvanpour, M.R.: A systemic analysis of link prediction in social network. Artif. Intell. Rev. 52(3), 1961–1995 (2019)CrossRefGoogle Scholar
  9. 9.
    Ibnoulouafi, A., Haziti, M.E., Cherifi, H.: M-centrality: identifying key nodes based on global position and local degree variation. J. Stat. Mech.: Theory Exp. 2018(7), 073407 (2018). http://stacks.iop.org/1742-5468/2018/i=7/a=073407MathSciNetCrossRefGoogle Scholar
  10. 10.
    Janosov, M.: Network science predicts who dies next in game of thrones. Department of Network and Data Science Group at Central European University (2017). https://networkdatascience.ceu.edu/article/2017-07-08/network-science-predicts-who-dies-next-game-thrones
  11. 11.
    Jia, R., Liang, P.: A game of thrones: power structure and the stability of regimes. In: Wärneryd, K. (ed.) The Economics of Conflict: Theory and Empirical Evidence. CESifo Seminar Series, pp. 79–104. MIT Press, Cambridge (2014)CrossRefGoogle Scholar
  12. 12.
    Lakiotaki, K., Delias, P., Sakkalis, V., Matsatsinis, N.F.: User profiling based on multi-criteria analysis: the role of utility functions. Oper. Res. Int. J. 9(1), 3–16 (2009)CrossRefGoogle Scholar
  13. 13.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007) CrossRefGoogle Scholar
  14. 14.
    Maurella, C., et al.: Social network analysis and risk assessment: an example of introducing an exotic animal disease in Italy. Microb. Risk Anal. 13 (2019).  https://doi.org/10.1016/j.mran.2019.04.001. ISSN: 2352-3522
  15. 15.
    Moradabadi, B., Meybodi, M.R.: Link prediction in weighted social networks using learning automata. Eng. Appl. Artif. Intell. 70, 16–24 (2018)CrossRefGoogle Scholar
  16. 16.
    Pierce, E., Kahle, B., Downey, A.: Bayesian survival analysis for “game of thrones”. A blog by Allen Downey (2015). http://allendowney.blogspot.com/2015/03/bayesian-survival-analysis-for-game-of.html
  17. 17.
    Sah, P., Mann, J., Bansal, S.: Disease implications of animal social network structure: a synthesis across social systems. J. Anim. Ecol. 87(3), 546–558 (2018)CrossRefGoogle Scholar
  18. 18.
    Schubart, R., Gjelsvik, A.: Women of Ice and Fire: Gender, Game of Thrones and Multiple Media Engagements. Bloomsbury, New York (2016)Google Scholar
  19. 19.
    Shurkin, J.: Using social networks to analyze the classics. Inside Science (2012). https://www.insidescience.org/news/using-social-networks-analyze-classics
  20. 20.
    Tracy, P.: Using big data to accurately predict death in the ‘game of thrones’ series. Intelligence on all things wireless, RCR Wireless News (2016). https://www.rcrwireless.com/20160915/big-data-analytics/game-of-thrones-tag31-tag99
  21. 21.
    Tschiatschek, S., Singla, A., Gomez Rodriguez, M., Merchant, A., Krause, A.: Fake news detection in social networks via crowd signals. In: Companion Proceedings of the The Web Conference 2018, pp. 517–524. International World Wide Web Conferences Steering Committee (2018)Google Scholar
  22. 22.
    Zhang, Y., Mu, L., Shen, G., Yu, Y., Han, C.: Fault diagnosis strategy of CNC machine tools based on cascading failure. J. Intell. Manuf. 30(5), 2193–2202 (2019)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.BITS Pilani, Goa CampusGoaIndia
  2. 2.IIT RoorkeeRoorkeeIndia
  3. 3.BITS Pilani, Hyderabad CampusHyderabadIndia

Personalised recommendations