Advertisement

EuWireless RAN Architecture and Slicing Framework for Virtual Testbeds

  • Jarno PinolaEmail author
  • Ilkka Harjula
  • Adam Flizikowski
  • Maria Safianowska
  • Arslan Ahmad
  • Suvidha Sudhakar Mhatre
Conference paper
  • 50 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 309)

Abstract

The most recent evolutionary steps in the development of mobile communication network architectures have introduced the concepts of virtualisation and slicing also into the Radio Access Network (RAN) part of the overall infrastructure. This trend has made RANs more flexible than ever before, facilitating resource sharing concepts which go far beyond the traditional infrastructure and RAN sharing schemes between commercial Mobile Network Operators (MNO). This paper introduces the EuWireless concept for a pan-European mobile network operator for research and presents its vision for RAN slicing and network resource sharing between the infrastructures of the EuWireless operator, commercial MNOs and research organisations around Europe. The EuWireless approach is to offer virtual large-scale testbeds, i.e., EuWireless experimentation slices, to European mobile network researchers by combining the experimental technologies from the local small-scale research testbeds with the commercial MNO resources such as licensed spectrum. The combined resources are configured and managed through the distributed EuWireless architecture based on inter-connected local installations, so-called Points of Presences (PoP).

Keywords

Virtual testbed Radio access network Network resource sharing Slicing Virtualisation 

References

  1. 1.
    3rd Generation Partnership Project: Study on new radio access technology: radio access architecture and interfaces. 3GPP TR 38.801 V14.0.0 (2017)Google Scholar
  2. 2.
    3rd Generation Partnership Project: NG-RAN; Architecture description. 3GPP TS 38.401 V15.1.0 (2018)Google Scholar
  3. 3.
    3rd Generation Partnership Project: NR; NR and NG-RAN Overall Description; Stage 2. 3GPP TS 38.300 V15.1.0 (2018)Google Scholar
  4. 4.
    3rd Generation Partnership Project: System Architecture for the 5G System; Stage 2. 3GPP TS 23.501 V15.1.0 (2018)Google Scholar
  5. 5.
    5G-PPP Architecture Working Group: View on 5G architecture. Version 3.0 (2019)Google Scholar
  6. 6.
    Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 20(3), 2429–2453 (2018).  https://doi.org/10.1109/COMST.2018.2815638CrossRefGoogle Scholar
  7. 7.
    Berman, M., et al.: GENI: a federated testbed for innovative network experiments. Comput. Netw. 61(2014), 5–23 (2014).  https://doi.org/10.1016/j.bjp.2013.12.037CrossRefGoogle Scholar
  8. 8.
    Bertenyi, B., Burbidge, R., Masini, G., Sirotkin, S., Gao, Y.: NG Radio Access Network (NG-RAN). J. ICT Stand. 6(1), 59–76 (2018).  https://doi.org/10.13052/jicts2245-800x.614CrossRefGoogle Scholar
  9. 9.
    Checko, A., et al.: Cloud RAN for mobile networks - a technology overview. IEEE Commun. Surv. Tutor. 17(1), 405–426 (2015).  https://doi.org/10.1109/COMST.2014.2355255CrossRefGoogle Scholar
  10. 10.
    China Mobile Research Institute: C-RAN: The Road Towards Green RAN (2011)Google Scholar
  11. 11.
    Da Silva, I., et al.: Impact of network slicing on 5G Radio Access Networks. In: European Conference on Networks and Communications, EUCNC 2016, pp. 153–157 (2016).  https://doi.org/10.1109/EuCNC.2016.7561023
  12. 12.
    European Telecommunications Standards Institute: Network Functions Virtualisation (NFV); Architectural Framework. ETSI GS NFV 002 - V1.2.1 (2014)Google Scholar
  13. 13.
    European Telecommunications Standards Institute: Network Functions Virtualisation (NFV); Ecosystem; Report on SDN Usage in NFV Architectural Framework. ETSI GS NFV-EVE 005 V1.1.1 (2015)Google Scholar
  14. 14.
    Farina, F., Szegedi, P., Sobieski, J.: GÉANT world testbed facility: federated and distributed testbeds as a service facility of GÉANT. In: 2014 26th International Teletraffic Congress, ITC 2014, Karlskrona, pp. 1–6. IEEE (2014).  https://doi.org/10.1109/ITC.2014.6932972
  15. 15.
    Ferrús, R., Sallent, O., Pérez-Romero, J., Agustí, R.: On 5G radio access network slicing: radio interface protocol features and configuration. IEEE Commun. Mag. 56(5), 184–192 (2018).  https://doi.org/10.1109/MCOM.2017.1700268CrossRefGoogle Scholar
  16. 16.
    Foukas, X., Patounas, G., Elmokashfi, A., Marina, M.K.: Network slicing in 5G: survey and challenges. IEEE Commun. Mag. 55(5), 94–100 (2017).  https://doi.org/10.1109/MCOM.2017.1600951CrossRefGoogle Scholar
  17. 17.
    Guttman, E., Ali, I.: Path to 5G: a control plane perspective. J. ICT Stand. 6(1), 87–100 (2018).  https://doi.org/10.13052/jicts2245-800x.616CrossRefGoogle Scholar
  18. 18.
    Haque, I.T., Abu-Ghazaleh, N.: Wireless software defined networking: a survey and taxonomy. IEEE Commun. Surv. Tutor. 18(4), 2713–2737 (2016).  https://doi.org/10.1109/COMST.2016.2571118CrossRefGoogle Scholar
  19. 19.
    He, K., et al.: Measuring control plane latency in SDN-enabled switches. In: 1st ACM SIGCOMM Symposium on Software Defined Networking Research, Santa Clara, pp. 25:1–25:6. ACM Press (2015).  https://doi.org/10.1145/2774993.2775069
  20. 20.
    Koumaras, H., et al.: 5GENESIS: the genesis of a flexible 5G facility. In: IEEE International Workshop on Computer-Aided Modeling Analysis and Design of Communication Links and Networks, Barcelona, p. 6. IEEE (2018).  https://doi.org/10.1109/CAMAD.2018.8514956
  21. 21.
    Kreutz, D., Ramos, F.M.V., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015).  https://doi.org/10.1109/JPROC.2014.2371999. http://ieeexplore.ieee.org/document/6994333/CrossRefGoogle Scholar
  22. 22.
    Mademann, F.: The 5G system architecture. J. ICT Stand. 6(1), 77–86 (2018).  https://doi.org/10.13052/jicts2245-800x.615CrossRefGoogle Scholar
  23. 23.
    Mayer, G.: RESTful APIs for the 5G service based architecture. J. ICT Stand. 6(1), 101–116 (2018).  https://doi.org/10.13052/jicts2245-800x.617CrossRefGoogle Scholar
  24. 24.
    Medhat, A.M., Taleb, T., Elmangoush, A., Carella, G.A., Covaci, S., Magedanz, T.: Service function chaining in next generation networks: state of the art and research challenges. IEEE Commun. Mag. 55(2), 216–223 (2017).  https://doi.org/10.1109/MCOM.2016.1600219RPCrossRefGoogle Scholar
  25. 25.
    Merino, P., et al.: EuWireless: design of a pan-European mobile network operator for research. In: European Conference on Networks and Communications, EuCNC 2018, Ljubljana, p. 2. IEEE (2018)Google Scholar
  26. 26.
    Mueck, M.D., Srikanteswara, S., Badic, B.: Spectrum Sharing: Licensed Shared Access (LSA) and Spectrum Access System (SAS) (2015)Google Scholar
  27. 27.
    Next Generation Mobile Networks Alliance: 5G White Paper (2015)Google Scholar
  28. 28.
    Next Generation Mobile Networks Alliance: NGMN Overview on 5G RAN Functional Decomposition (2018)Google Scholar
  29. 29.
    O-RAN Alliance: O-RAN: Towards an Open and Smart RAN (2018)Google Scholar
  30. 30.
    Open Networking Foundation: Applying SDN Architecture to 5G Slicing (2016)Google Scholar
  31. 31.
    Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J.J., Lorca, J., Folgueira, J.: Network slicing for 5G with SDN/NFV: concepts, architectures, and challenges. IEEE Commun. Mag. 55(5), 80–87 (2017).  https://doi.org/10.1109/MCOM.2017.1600935CrossRefGoogle Scholar
  32. 32.
    Rios, Á., Valera-Muros, B., Merino-Gomez, P., Sobieski, J.: Expanding GÉANT testbeds service to support pan-European 5G network slices for research in the EuWireless project. Mob. Inf. Syst. 2019, 1–13 (2019).  https://doi.org/10.1155/2019/6249247CrossRefGoogle Scholar
  33. 33.
    Robitza, W., et al.: Challenges of future multimedia QoE monitoring for internet service providers. Multimed. Tools Appl. 76(21), 22243–22266 (2017).  https://doi.org/10.1007/s11042-017-4870-zCrossRefGoogle Scholar
  34. 34.
    Safianowska, M.B., et al.: Current experiences and lessons learned towards defining pan-European mobile network operator for research - based on EU project EuWireless. Przegla̧d Telekomun. I Wiadomości Telekomun. 2019(6) (2019).  https://doi.org/10.15199/59.2019.6.5
  35. 35.
    Sallent, O., Pérez-Romero, J., Ferrús, R., Agustí, R.: On radio access network slicing from a radio resource management perspective. IEEE Wirel. Commun. Netw. Conf. WCNC 24(5), 166–174 (2017).  https://doi.org/10.1109/MWC.2017.1600220WCCrossRefGoogle Scholar
  36. 36.
    Silva, A.P., et al.: 5GinFIRE: an end-to-end Open5G vertical network function ecosystem. Ad Hoc Netw. 93, 101895 (2019).  https://doi.org/10.1016/j.adhoc.2019.101895. https://linkinghub.elsevier.com/retrieve/pii/S1570870518309387CrossRefGoogle Scholar
  37. 37.
    Tehrani, R.H., Vahid, S., Triantafyllopoulou, D., Lee, H., Moessner, K.: Licensed spectrum sharing schemes for mobile operators: a survey and outlook. IEEE Commun. Surv. Tutor. 18(4), 2591–2623 (2016).  https://doi.org/10.1109/COMST.2016.2583499CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.VTT Technical Research Centre of FinlandOuluFinland
  2. 2.IS-WirelessPiasecznoPoland

Personalised recommendations