• Larry A. Taber


This chapter discusses a phenomenological approach to simulate active contraction within the framework of elasticity theory. The concepts of an evolving zero-stress configuration and time-varying elasticity are introduced. These ideas are used to model the fundamental behavior of contractile structures. The theory is then used to study the mechanics of the beating heart.


Actin Myosin Cross-bridge Contraction Contractile element Contractile fiber Sarcomere Contraction velocity Hill’s equation Muscle (striated smooth heart) Stress fiber Twitch Tetanus Myocardium Time-varying elasticity Time-varying elastance Strain-energy density function (passive active) Pressure-volume loop Pressure-volume relation 


  1. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. W.W. Norton, New YorkGoogle Scholar
  2. An SS, Fredberg JJ (2007) Biophysical basis for airway hyperresponsiveness. Can J Physiol Pharmacol 85(7):700–714CrossRefGoogle Scholar
  3. Beyar R, Yin FCP, Hausknecht M, Weisfeldt ML, Kass DA (1989) Dependence of left ventricular twist-radial shortening relations on cardiac cycle phase. Am J Physiol Heart Circ Physiol 257(4):H1119–H1126CrossRefGoogle Scholar
  4. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102(11):1307–1318CrossRefGoogle Scholar
  5. Fredberg JJ, Inouye D, Miller B, Nathan M, Jafari S, Raboudi SH, Butler JP, Shore SA (1997) Airway smooth muscle, tidal stretches, and dynamically determined contractile states. Am J Respir Crit Care Med 156:1752–1759CrossRefGoogle Scholar
  6. Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkCrossRefGoogle Scholar
  7. Fung YC (1997) Biomechanics: circulation, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  8. Herzog W (2017) Skeletal muscle mechanics: questions, problems and possible solutions. J Neuroeng Rehabil 14(1):98CrossRefGoogle Scholar
  9. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer, SunderlandGoogle Scholar
  10. Hu S, Chen J, Butler JP, Wang N (2005). Prestress mediates force propagation into the nucleus. Biochem Biophys Res Commun 329(2):423–428CrossRefGoogle Scholar
  11. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ (1995) Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol 269(2):H571–H582CrossRefGoogle Scholar
  12. Martin AC, Kaschube M, Wieschaus EF (2009) Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–499CrossRefGoogle Scholar
  13. McMahon TA (1984) Muscles, reflexes, and locomotion. Princeton University Press, PrincetonGoogle Scholar
  14. Sagawa K, Maughan L, Suga H, Sunagaw K (1988) Cardiac contraction and the pressure-volume relationship. Oxford University Press, New YorkGoogle Scholar
  15. Szczesny SE, Mauck RL (2017) The nuclear option: evidence implicating the cell nucleus in mechanotransduction. J Biomech Eng 139(2): 021006CrossRefGoogle Scholar
  16. Taber LA, Yang M, Podszus WW (1996) Mechanics of ventricular torsion. J Biomech 29:745–752CrossRefGoogle Scholar
  17. Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, Singh R, Khanna N, Belmont AS, Wang N (2016) Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 15:1287–1296CrossRefGoogle Scholar
  18. Vilfan A, Duke T (2003) Instabilities in the transient response of muscle. Biophys J 85:818–827CrossRefGoogle Scholar
  19. Waldman LK, Fung YC, Covell JW (1985) Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res 57:152–163CrossRefGoogle Scholar
  20. Wang N, Suo Z (2005) Long-distance propagation of forces in a cell. Biochem Biophys Res Commun 328(4):1133–1138MathSciNetCrossRefGoogle Scholar
  21. Wang V, Nielsen P, Nash M (2015) Image-based predictive modeling of heart mechanics. Annu Rev Biomed Eng 17:351–383CrossRefGoogle Scholar
  22. Woods RH (1892) A few applications of a physical theorem to membranes in the human body in a state of tension. J Anat Physiol 26:362–370Google Scholar
  23. Zahalak GI (1996) Non-axial muscle stress and stiffness. J Theor Biol 182:59–84CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Larry A. Taber
    • 1
  1. 1.Department of Biomedical EngineeringWashington UniversitySt. LouisUSA

Personalised recommendations