Review of Machine Learning in Geosciences and Remote Sensing

  • Noel DavidEmail author
  • Rejo Mathew
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 49)


It is known that the machine learning algorithms are able to process data without the need of human intervention. A lot of the research and analysis involved in Geosciences and Remote Sensing is labor intensive and demanded high amount of resources. The problems in Geosciences are usually different to what is encountered in other applications, requiring unique techniques and formulations. A more time and cost effective method is needed to help classify, identify, and collect the required data. Machine learning is used to solve various problems in geosciences and remote sensing effectively. Machine learning is a collection of various algorithms such as support vector machines, gradient boosting machines, trees, etc. which provide us with different options of mapping our results, including classification, identification and prediction. The main objective is to use Machine learning as a tool to learn from the given data and effectively solve problems in remote sensing and geosciences.


Geosciences Genetic Programming Machine learning Remote sensing RSI images Regression Support Vector Machine 


  1. 1.
    Monzurul, I., Anh, D., Khan, W., Pankaj, B.: Detection of potato diseases using image segmentation and multiclass support vector machine. In: CCECE (2017)Google Scholar
  2. 2.
    Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L.: Machine learning in geosciences and remote sensing. Geosci. Front. 7(1), 3–10 (2015). China University of GeosciencesCrossRefGoogle Scholar
  3. 3.
    Bhatt, A., Ghosh, S.K., Kumar, A.: Automated change detection in satellite images using machine learning algorithms for Delhi, India. In: IEEE International Symposium on Geoscience and Remote Sensing (2015)Google Scholar
  4. 4.
    Alavi, A.H., Gandomi, A.H., Sahab, M.G., Gandomi, M.: Multi expression programming: a new approach to formulation of soil classification. Eng. Comput. 26(2), 111–118 (2010)CrossRefGoogle Scholar
  5. 5.
    Javadi, A.A., Rezania, M., Nezhad, M.M.: Evaluation of liquefaction induced lateral displacements using genetic programming. Comput. Geotech. 33, 222–233 (2006)CrossRefGoogle Scholar
  6. 6.
    WHO: World Health Organization Press Release (2014).
  7. 7.
    Das, R., De, S., Thepade, S.: Machine learning in hybrid environment for information identification with remotely sensed image data. In: Gavrilova, M., Tan, C. (eds.) Transactions on Computational Science XXXIV. LNCS, vol. 11820. Springer, Heidelberg (2019)Google Scholar
  8. 8.
    Khatami, R., Mountrakis, G., Stehma, S.V.: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research. Remote Sens. Environ. 177, 89–100 (2016)CrossRefGoogle Scholar
  9. 9.
    Joseph, S.I.T.: Survey of data mining algorıthm’s for intelligent computıng system. J. Trends Comput. Sci. Smart Technol. (TCSST) 1(1), 14–24 (2019)CrossRefGoogle Scholar
  10. 10.
    Koza, J.: Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H.A., Kumar, V.: Machine learning for the geosciences: challenges and opportunities. IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2019)CrossRefGoogle Scholar
  12. 12.
    Ravandi, E.G., Rahmannejad, R., FeiliMonfared, A.E., Ravandid, E.G.: Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation. Int. J. Min. Sci. Technol. 23(5), 733–737 (2013)CrossRefGoogle Scholar
  13. 13.
    Lary, D.J., Faruque, F., Malakar, N., Moore, A., Roscoe, B., Adams, Z., Eggelston, Y.: Estimating the global abundance of ground level presence of microscopic particulate matter. Geosp. Health 8(3), S611–S630 (2014)CrossRefGoogle Scholar
  14. 14.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)CrossRefGoogle Scholar
  15. 15.
    Zhan, Y., Luo, Y., Deng, X., Chen, H., Grieneisen, M.L., Shen, X., Zhu, L., Zhang, M.: Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm. Atmos. Environ. 155, 129–139 (2017)CrossRefGoogle Scholar
  16. 16.
    Kleine Deters, J., Zalakeviciute, R., Gonzalez, M., Rybarczyk, Y.: Modeling PM2.5 urban pollution using machine learning and selected meteorological parameters. J. Electr. Comput. Eng. 2017, 14 (2017)Google Scholar
  17. 17.
    Ozkan, S., Bozdagi Akar, G.: Hyperspectral data to relative lidar depth: an inverse problem for remote sensing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)Google Scholar
  18. 18.
    Hassan, A., Hussein, W.M., Said, E., Hanafy, M.E.: A deep learning framework for automatic airplane detection in remote sensing satellite images. In: 2019 IEEE Aerospace Conference, pp. 1–10. IEEE (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mukesh Patel School of Technology Management and EngineeringNMIMS University (Deemed-to-be)MumbaiIndia

Personalised recommendations