Comprehensive LU Factors of Polynomial Matrices

  • Ana C. Camargos Couto
  • Marc Moreno Maza
  • David Linder
  • David J. JeffreyEmail author
  • Robert M. Corless
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)


The comprehensive LU decomposition of a parametric matrix consists of a case analysis of the LU factors for each specialization of the parameters. Special cases can be discontinuous with respect to the parameters, the discontinuities being triggered by zero pivots encountered during factorization. For polynomial matrices, we describe an implementation of comprehensive LU decomposition in Maple, using the RegularChains package.


Parametric linear algebra LU decomposition Regular chains 


  1. 1.
    Corless, R.M., Jeffrey, D.J.: Well... it isn’t quite that simple. SIGSAM Bull. 26(3), 2–6 (1992)CrossRefGoogle Scholar
  2. 2.
    Kalkbrener, M.: Three Contributions to Elimination Theory. Johannes Kepler University, Linz (1991)zbMATHGoogle Scholar
  3. 3.
    Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comp. 28(1–2), 105–124 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yang, L., Zhang, J.: Searching dependency between algebraic equations: an algorithm applied to automated reasoning. International Atomic Energy Agency, IC/89/263, Miramare, Trieste, Italy (1991)Google Scholar
  5. 5.
    Corless, R.M., Jeffrey, D.J.: The Turing factorization of a rectangular matrix. SIGSAM Bull. 31(3), 20–30 (1997)CrossRefGoogle Scholar
  6. 6.
    Weispfenning, V.: Comprehensive grobner bases. J. Symbolic Comput. 14, 1–29 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Reid, G.: Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Eur. J. Appl. Math. 2, 293–318 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jeffrey, D.J., Corless R.M.: Linear algebra in Maple. In: Hogben, L. (ed) Chapter 89 in the CRC Handbook of Linear Algebra, 2nd ed. Chapman & Hall/CRC (2013)Google Scholar
  9. 9.
    Chen, C., Golubitsky, O., Lemaire, F., Moreno Maza, M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007). Scholar
  10. 10.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boulier, F., Lemaire, F., Moreno Maza, M.: Well Known Theorems on Triangular Systems and the D5 Principle. In: Dumas, J.-G. et al. (eds.) Proceedings of Transgressive Computing 2006, Granada, Spain (2006)Google Scholar
  12. 12.
    Chen, C., et al.: Solving semi-algebraic systems with the RegularChains library in Maple. In: Raschau, S. (ed.) Proceedings of the Fourth International Conference on Mathematical Aspects of Computer Science and Information Sciences (MACIS 2011), pp. 38–51 (2011)Google Scholar
  13. 13.
    Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in Maple 10. In: Kotsireas, I.S. (ed.) Proceedings of Maple Summer Conference 2005, Waterloo, Canada (2005)Google Scholar
  14. 14.
    Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comp. 13, 353–394 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ORCCAUniversity of Western OntarioLondonCanada
  2. 2.MaplesoftWaterlooCanada

Personalised recommendations