Advertisement

Generalized Integral Dependence Relations

  • Katsusuke NabeshimaEmail author
  • Shinichi Tajima
Conference paper
  • 31 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)

Abstract

A generalization of integral dependence relations in a ring of convergent power series is studied in the context of symbolic computation. Based on the theory of Grothendieck local duality on residues, an effective algorithm is introduced for computing generalized integral dependence relations. It is shown that, with the aid of local cohomology, generalized integral dependence relations in the ring of convergent power series can be computed in a polynomial ring. An extension of the proposed method to parametric cases is also discussed.

Keywords

Integral closure Standard basis Local cohomology 

References

  1. 1.
    Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1993).  https://doi.org/10.1007/978-1-4612-0913-3_6CrossRefzbMATHGoogle Scholar
  2. 2.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. A Wiley-Interscience publication (1978)Google Scholar
  3. 3.
    Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial systems. J. Symb. Comput. 49, 27–44 (2013)CrossRefGoogle Scholar
  4. 4.
    Kashiwara, M.: \(B\)-functions and holonomic systems. Rationality of roots of \(B\)-functions. Invent. Math. 38, 33–53 (1976–1977)Google Scholar
  5. 5.
    Nabeshima, K.: On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32973-9_21CrossRefGoogle Scholar
  7. 7.
    Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proceedings of the ISSAC 2014, pp. 351–358. ACM (2014)Google Scholar
  8. 8.
    Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Proceedings of the ISSAC 2015, pp. 291–298. ACM (2015)Google Scholar
  9. 9.
    Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings of convergent power series via Gröbner bases. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 252–267. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32859-1_22CrossRefzbMATHGoogle Scholar
  10. 10.
    Nabeshima, K., Tajima, S.: Computing Tjurina stratifications of \(\mu \)-constant deformations via parametric local cohomology systems. Appl. Algebra Eng. Commun. Comput. 27, 451–467 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nabeshima, K., Tajima, S.: Solving parametric ideal membership problems and computing integral numbers in a ring of convergent power series via comprehensive Gröbner systems. Math. Comput. Sci. 13, 185–194 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nabeshima, K., Tajima, S.: Testing zero-dimensionality of varieties at a point. To appear in Mathematics in Computer Science. arXiv:1903.12365 [cs.SC] (2019)
  14. 14.
    Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html
  15. 15.
    Scherk, J.: On the Gauss-Manin connection of an isolated hypersurface singularity. Math. Ann. 238, 23–32 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shibuta, F., Tajima, S.: An algorithm for computing the Hilbert-Samuel multiplicities and reductions of zero-dimensional ideal of Cohen-Macaulay local rings. J. Symb. Comput. 96, 108–121 (2020)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Swanson, I., Huneke, C.: Integral Closure of Ideals. Rings, and Modules. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  18. 18.
    Tajima, S.: On polar varieties, logarithmic vector fields and holonomic \(D\)-modules. RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symb. Comput. 44, 435–448 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Yano, T.: On the theory of \(b\)-functions. Pub. Res. Inst. Math. Sci. 14, 111–202 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushimaJapan
  2. 2.Graduate School of Science and TechnologyNiigata UniversityNishi-ku, NiigataJapan

Personalised recommendations