Proving Two Conjectural Series for \(\zeta (7)\) and Discovering More Series for \(\zeta (7)\)

  • Jakob AblingerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)


We give a proof of two identities involving binomial sums at infinity conjectured by Zhi-Wei Sun. In order to prove these identities, we use a recently presented method i.e., we view the series as specializations of generating series and derive integral representations. Using substitutions, we express these integral representations in terms of cyclotomic harmonic polylogarithms. Finally, by applying known relations among the cyclotomic harmonic polylogarithms, we derive the results. These methods are implemented in the computer algebra package HarmonicSums.


  1. 1.
    Ablinger, J.: Discovering and proving infinite binomial sums identities. J. Exp. Math. 26, 62–71 (2017). arXiv: 1507.01703 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ablinger, J.: Discovering and proving infinite pochhammer sum identities. J. Exp. Math. 1–15 (2019). arXiv: 1902.11001
  3. 3.
    Ablinger, J.: Computing the inverse Mellin transform of holonomic sequences using Kovacic’s algorithm. In: PoS RADCOR2017, vol. 69 (2017). arXiv: 1801.01039
  4. 4.
    Ablinger, J.: Inverse mellin transform of holonomic sequences. In: PoS LL 2016, vol. 067 (2016). arXiv: 1606.02845
  5. 5.
    Ablinger, J.: The package HarmonicSums: computer algebra and analytic aspects of nested sums. In: Loops and Legs in Quantum Field Theory - LL 2014 (2004). arXiv: 1407.6180
  6. 6.
    Ablinger, J., Blümlein, J., Schneider, C.: Generalized harmonic, cyclotomic, and binomial sums, their polylogarithms and special numbers. J. Phys. Conf. Ser. 523, 012060 (2014). arxiv: 1310.5645CrossRefGoogle Scholar
  7. 7.
    Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums and their associated iterated integrals. J. Math. Phys. Comput. 55, 1–57 (2014). arXiv: 1407.1822MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011). arxiv: 1105.6063MathSciNetCrossRefGoogle Scholar
  9. 9.
    Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: Proceedings of ISSAC 1994. ACM Press (1994)Google Scholar
  10. 10.
    Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: The multiple zeta value data mine. Comput. Phys. Commun. 181, 582–625 (2010). arXiv: 0907.2557MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bronstein, M.: Linear ordinary differential equations: breaking through the order 2 barrier. In: Proceedings of ISSAC 1992. ACM Press (1992)Google Scholar
  12. 12.
    Kauers, M., Paule, P.: The Concrete Tetrahedron. Text and Monographs in Symbolic Computation. Springer, Wien (2011). Scholar
  13. 13.
    Kovacic, J.J.: An algorithm for solving second order linear homogeneous differential equations. J. Symb. Comput. 2, 3–43 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symb. Comput. 14, 243–264 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symb. Comput. 27, 239–259 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sun, Z.-W.: List of conjectural series for powers of \(\pi \) and other constants. arXiv: 1102.5649

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Institute for Symbolic ComputationJohannes Kepler UniversityLinzAustria

Personalised recommendations