Advertisement

An Overview of Geometry Plus Simulation Modules

  • Angelos MantzaflarisEmail author
Conference paper
  • 36 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)

Abstract

We give an overview of the open-source library “G+Smo”. G+Smo is a C++ library that brings together mathematical tools for geometric design and numerical simulation. It implements the relatively new paradigm of isogeometric analysis, which suggests the use of a unified framework in the design and analysis pipeline. G+Smo is an object-oriented, cross-platform, fully templated library and follows the generic programming principle, with a focus on both efficiency and ease of use. The library aims at providing access to high quality, open-source software to the community of numerical simulation and beyond.

Keywords

C++ B-splines NURBS Isogeometric analysis Geometric design 

Notes

Acknowledgement

G+Smo is jointly developed by several contributors at the Johannes Kepler University, at the RICAM Institute of the Austrian Academy of Sciences (in the frame of the Austrian Science Fund NFN project S117) at INRIA and at the Department of Applied Mathematics of TU Delft (The Netherlands). More contributions have been made by developers from other institutions. The full list of contributors is available at https://github.com/gismo/gismo/wiki/About--G-Smo.

References

  1. 1.
    Christoforou, E., Mantzaflaris, A., Mourrain, B., Wintz, J.: Axl, a geometric modeler for semi-algebraic shapes. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 128–136. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96418-8_16CrossRefGoogle Scholar
  2. 2.
    Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester (2009)CrossRefGoogle Scholar
  3. 3.
    Giannelli, C., Juettler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Speh, J.: THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016). http://dx.doi.org/10.1016/j.cma.2015.11.002
  4. 4.
    Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005). http://dx.doi.org/10.1016/j.cma.2004.10.008
  5. 5.
    Juettler, B., Langer, U., Mantzaflaris, A., Moore, S., Zulehner, W.: Geometry + simulation modules: Implementing isogeometric analysis. Proc. Appl. Math. Mech. 14(1), 961–962 (2014). http://dx.doi.org/10.1002/pamm.201410461
  6. 6.
    Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Multipatch discontinuous galerkin isogeometric analysis. In: Jüttler, B., Simeon, B. (eds.) Isogeometric Analysis and Applications 2014. LNCSE, vol. 107, pp. 1–32. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23315-4_1CrossRefzbMATHGoogle Scholar
  7. 7.
    Shamanskiy, A., Simeon, B.: Isogeometric simulation of thermal expansion for twin screw compressors. IOP Conf. Ser.: Mater. Sci. Eng. 425, 012031 (2018). https://doi.org/10.1088/1757-899x/425/1/012031
  8. 8.
    Takacs, S.: Fast multigrid solvers for conforming and non-conforming multi-patch isogeometric analysis, arXiv preprint https://arxiv.org/abs/1902.01818 (2019)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Inria Sophia Antipolis - Méditerranée, Université Côte d’AzurNiceFrance

Personalised recommendations