# Edge-Critical Equimatchable Bipartite Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)

## Abstract

A graph is called equimatchable if all of its maximal matchings have the same size. Lesk et al.  provided a characterization of equimatchable bipartite graphs. Since this characterization is not structural, Frendrup et al.  also provided a structural characterization for equimatchable graphs with girth at least five; in particular, a characterization for equimatchable bipartite graphs with girth at least six. In this work, we extend the partial characterization of Frendrup et al.  to equimatchable bipartite graphs without any restriction on girth. For an equimatchable graph, an edge is said to be critical-edge if the graph obtained by removal of this edge is not equimatchable. An equimatchable graph is called edge-critical if every edge is critical. Reducing the characterization of equimatchable bipartite graphs to the characterization of edge-critical equimatchable bipartite graphs, we give two characterizations of edge-critical equimatchable bipartite graphs.

## Keywords

Equimatchable Bipartite graphs Edge-critical

## References

1. 1.
Akbari, S., Ghodrati, A.H., Hosseinzadeh, M.A., Iranmanesh, A.: Equimatchable regular graphs. J. Graph Theory 87, 35–45 (2018)
2. 2.
Deniz, Z., Ekim, T.: Critical equimatchable graphs. Preprint Google Scholar
3. 3.
Deniz, Z., Ekim, T.: Edge-stable equimatchable graphs. Discrete Appl. Math. 261, 136–147 (2019)
4. 4.
Frendrup, A., Hartnell, B., Preben, D.: A note on equimatchable graphs. Australas. J. Comb. 46, 185–190 (2010)
5. 5.
Grünbaum, B.: Matchings in polytopal graphs. Networks 4, 175–190 (1974)
6. 6.
Lesk, M., Plummer, M.D., Pulleyblank, W.R.: Equi-matchable graphs. In: Graph Theory and Combinatorics (Cambridge, 1983), pp. 239–254. Academic Press, London (1984)Google Scholar
7. 7.
Lewin, M.: M-perfect and cover-perfect graphs. Israel J. Math. 18, 345–347 (1974)
8. 8.
Lovász, L., Plummer, M.D.: Matching Theory, vol. 29, Annals of Discrete Mathematics edn. North-Holland, Amsterdam (1986)
9. 9.
Meng, D.H.-C.: Matchings and coverings for graphs. Ph.D. thesis. Michigan State University, East Lansing, MI (1974)Google Scholar
10. 10.
Sumner, D.P.: Randomly matchable graphs. J. Graph Theory 3, 183–186 (1979)