Computing an Invariant of a Linear Code

  • Mijail Borges-QuintanaEmail author
  • Miguel Ángel Borges-Trenard
  • Edgar Martínez-MoroEmail author
  • Gustavo Torres-Guerrero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)


In this work we present an efficient algorithm that generates the leader codewords of a linear code in an incremental form. On the other hand, using the set of leader codewords we define a transformation that remains invariant only if the codes are equivalent which is used as a signature for checking the code equivalence problem. An upper bound on the weight of the codewords is imposed to this algorithm in order to get a smallest set that can be also used as a signature for the ‘Code Equivalence Problem’.


Leader codewords Code equivalence Coset leaders 


  1. 1.
    Babai, L., Codenotti, P., Grochow, J.A., Qiao, Y.: Code equivalence and group isomorphism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1395–1408. Society for Industrial and Applied Mathematics (2011)Google Scholar
  2. 2.
    Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.: Error-Correcting Linear Codes: Classification by Isometry and Applications, vol. 18. Springer, Heidelberg (2006). Scholar
  3. 3.
    Borges-Quintana, M., Borges-Trenard, M., Márquez-Corbella, I., Martínez-Moro, E.: Computing coset leaders and leader codewords of binary codes. J. Algebra Appl. 14(8), 19 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Borges-Quintana, M., Borges-Trenard, M., Martínez-Moro, E.: On a Gröbner bases structure associated to linear codes. J. Discrete Math. Sci. Cryptogr. 10(2), 151–191 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borges-Quintana, M., Borges-Trenard, M., Martínez-Moro, E.: On the weak order ideal associated to linear codes. Math. Comput. Sci. 12(3), 339–347 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Braun, G., Pokutta, S.: A polyhedral characterization of border bases. SIAM J. Discrete Math. 30(1), 239–265 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Helleseth, T., Kløve, T., Levenshtein, V.I.: Error-correction capability of binary linear codes. IEEE Trans. Inf. Theory 51(4), 1408–1423 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inform. Theory 28, 496–511 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Technology. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  10. 10.
    Petrank, E., Roth, R.: Is code equivalence easy to decide? IEEE Trans. Inform. Theory 43(5), 1602–1604 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sendier, N.: Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE Trans. Inform. Theory 46(4), 1193–1203 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sendier, N., Simos, D.: How easy is code equivalence over \(\mathbb{F}_q\)? In: International Workshop on Coding and Cryptography (2013).
  13. 13.
    Sendrier, N., Simos, D.E.: The hardness of code equivalence over \(\mathbb{F}_q\) and its application to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 203–216. Springer, Heidelberg (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mijail Borges-Quintana
    • 1
    Email author
  • Miguel Ángel Borges-Trenard
    • 2
  • Edgar Martínez-Moro
    • 3
    Email author
  • Gustavo Torres-Guerrero
    • 1
  1. 1.Department of Mathematics, Faculty of Natural and Exact SciencesUniversity of OrienteSantiago de CubaCuba
  2. 2.Doctorate in Mathematics EducationUniversity Antonio NariñoBogotáColombia
  3. 3.Institute of Mathematics IMUVaUniversity of ValladolidValladolidSpain

Personalised recommendations