Certified Hermite Matrices from Approximate Roots - Univariate Case

  • Tulay Ayyildiz AkogluEmail author
  • Agnes Szanto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11989)


Let \(f_1, \ldots , f_m\) be univariate polynomials with rational coefficients and \(\mathcal {I}:=\langle f_1, \ldots , f_m\rangle \subset {\mathbb Q}[x]\) be the ideal they generate. Assume that we are given approximations \(\{z_1, \ldots , z_k\}\subset \mathbb {Q}[i]\) for the common roots \(\{\xi _1, \ldots , \xi _k\}=V(\mathcal {I})\subseteq {\mathbb C}\). In this study, we describe a symbolic-numeric algorithm to construct a rational matrix, called Hermite matrix, from the approximate roots \(\{z_1, \ldots , z_k\}\) and certify that this matrix is the true Hermite matrix corresponding to the roots \(V({\mathcal I})\). Applications of Hermite matrices include counting and locating real roots of the polynomials and certifying their existence.


Symbolic–numeric computation Approximate roots Hermite matrices 


  1. 1.
    Ayyildiz Akoglu, T., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined and singular polynomial systems over Q. J. Symb. Comput. 84, 147–171 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ayyildiz Akoglu, T.: Certifying solutions to polynomial systems over Q. Ph.D. thesis, North Carolina State University (2016)Google Scholar
  3. 3.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. AACIM, vol. 10. Springer, Heidelberg (2006). Scholar
  4. 4.
    Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on the pellet test and newton iteration. J. Symb. Comput. 86, 51–96 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    González-Vega, L.: On the complexity of computing the greatest common divisor of several univariate polynomials. In: Baeza-Yates, R., Goles, E., Poblete, P.V. (eds.) LATIN 1995. LNCS, vol. 911, pp. 332–345. Springer, Heidelberg (1995). Scholar
  6. 6.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini, vol. 25. SIAM, Philadelphia (2013)Google Scholar
  7. 7.
    Hermite, C.: Sur le nombre des racines d’une équation algébrique comprise entre des limites données. J. Reine Angew. Math. 52, 39–51 (1850). Also in Oeuvres completes, vol. 1, pp. 397–414Google Scholar
  8. 8.
    Hermite, C.: Remarques sur le théorème de Sturm. CR Acad. Sci. Paris 36(52–54), 171 (1853)Google Scholar
  9. 9.
    Hermite, C.: Extrait d’une lettre de Mr. Ch. Hermite de Paris à Mr. Borchardt de Berlin sur le nombre des racines d’une équation algébrique comprises entre des limites données. Journal für die reine und angewandte Mathematik 52, 39–51 (1856)Google Scholar
  10. 10.
    Pan, V.Y.: Nearly optimal polynomial root-finders: the state of the art and new progress. arXiv:1805.12042v10 [cs.NA] (2019)
  11. 11.
    Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theoret. Comput. Sci. 409(2), 269–281 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)zbMATHGoogle Scholar
  13. 13.
    Steffy, D.E.: Exact solutions to linear systems of equations using output sensitive lifting. ACM Commun. Comput. Algebra 44(3/4), 160–182 (2011)zbMATHGoogle Scholar
  14. 14.
    Wan, Z.: An algorithm to solve integer linear systems exactly using numerical methods. J. Symb. Comput. 41, 621–632 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, X., Pan, V.Y.: Acceleration of Euclidean algorithm and rational number reconstruction. SIAM J. Comput. 32(2), 548–556 (2003) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Weisstein, E.W.: Newton-Girard Formulas. From MathWorld-A Wolfram Web Resource.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Karadeniz Technical UniversityTrabzonTurkey
  2. 2.North Carolina State UniversityRaleighUSA

Personalised recommendations