Advertisement

Development and Operation Analysis of Spectrum Monitoring Subsystem 2.4–2.5 GHz Range

  • Zhengbing Hu
  • Volodymyr Buriachok
  • Ivan Bogachuk
  • Volodymyr SokolovEmail author
  • Dmytro Ageyev
Chapter
  • 4 Downloads
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 48)

Abstract

The paper presents a substantiation of the effectiveness of IEEE 802.11 wireless network analysis subsystem implementation using miniature spectrum analyzers. Also it was given an overview of firmware work scheme, development process of trial versions, monitoring system development approaches, current development stage, infrastructure for research system, reliability and scan check, our system design and hardware implementation, future work, etc. Paper also provides technical solutions on automation, optimal algorithms searching, errors correcting, organizing software according to the Model-View-Controller scheme, harmonizing data exchange protocols, storing and presenting the obtained results.

Keywords

Dynamic channel allocation Access point Integrity Availability Spectrum analyzer 

Notes

Acknowledgements

This scientific work was partially supported by RAMECS and self-determined research funds of CCNU from the colleges’ primary research and operation of MOE (CCNU19TS022).

References

  1. 1.
    Johnson D, Ketel M (2019) IoT: application protocols and security. Int J Comput Netw Inf Secur 11(4):1–8.  https://doi.org/10.5815/ijcnis.2019.04.01CrossRefGoogle Scholar
  2. 2.
    Noman Riaz M, Buriro A, Mahboob A (2018) Classification of attacks on wireless sensor networks: a survey. Int J Wirel Microw Technol 8(6):15–39.  https://doi.org/10.5815/ijwmt.2018.06.02CrossRefGoogle Scholar
  3. 3.
    Radivilova T, Hassan HA (2017) Test for penetration in Wi-Fi network: attacks on WPA2-PSK and WPA2-enterprise. In: 2017 international conference on information and telecommunication technologies and radio electronics (UkrMiCo). IEEE, pp 1–4Google Scholar
  4. 4.
    Dobrynin I et al (2018) Use of approaches to the methodology of factor analysis of information risks for the quantitative assessment of information risks based on the formation of cause-and-effect links. In: Proceedings of the 2018 international scientific-practical conference problems of infocommunications. Science and technology (PIC S&T). IEEE, pp 229–232.  https://doi.org/10.1109/infocommst.2018.8632022
  5. 5.
    Ageyev D et al (2018) Provision security in SDN/NFV. In: 2018 14th international conference on advanced trends in radioelecrtronics, telecommunications and computer engineering (TCSET). IEEE, pp 506–509.  https://doi.org/10.1109/tcset.2018.8336252
  6. 6.
    Ageyev DV, Salah MT (2016) Parametric synthesis of overlay networks with self-similar traffic. Telecommun Radio Eng (English translation of Elektrosvyaz and Radiotekhnika) 75(14):1231–1241CrossRefGoogle Scholar
  7. 7.
    Kirichenko L, Radivilova T, Bulakh V (2018) Classification of fractal time series using recurrence plots. In: 2018 international scientific-practical conference problems of infocommunications. Science and technology (PIC S&T). IEEE, pp 719–724.  https://doi.org/10.1109/infocommst.2018.8632010
  8. 8.
    Daradkeh YI, Kirichenko L, Radivilova T (2018) Development of QoS methods in the information networks with fractal traffic. Int J Electron Telecommun 64(1):27–32Google Scholar
  9. 9.
    Noman Riaz M (2018) Clustering algorithms of wireless sensor networks: a survey. Int J Wirel Microw Technol 8(4):40–53.  https://doi.org/10.5815/ijwmt.2018.04.03CrossRefGoogle Scholar
  10. 10.
    Kasim Ibraheem I, Al-Hussainy AA-H (2018) A multi QoS genetic-based adaptive routing in wireless mesh networks with Pareto solutions. Int J Comput Netw Inf Secur 10(9):1–9.  https://doi.org/10.5815/ijcnis.2018.09.01CrossRefGoogle Scholar
  11. 11.
    Saini R, Khurana SS (2016) Deployment of coordinated multiple sensors to detect stealth man-in-the-middle attack in WLAN. Int J Inf Technol Comput Sci 8(6):44–51.  https://doi.org/10.5815/ijitcs.2016.06.06CrossRefGoogle Scholar
  12. 12.
    Abidoye AP (2018) Energy efficient routing protocol for maximum lifetime in wireless sensor networks. Int J Inf Technol Comput Sci 10(4):33–45.  https://doi.org/10.5815/ijitcs.2018.04.04CrossRefGoogle Scholar
  13. 13.
    Chandrappa S, Dharmanna L, Shyama Srivatsa Bhatta UV, Sudeeksha Chiploonkar M, Suraksha MN, Thrupthi S (2017) Design and development of IoT device to measure quality of water. Int J Modern Educ Comput Sci 9(4):50–56.  https://doi.org/10.5815/ijmecs.2017.04.06
  14. 14.
    Chandrappa S, Dharmanna L, Poojary SV, Meghana NU (2017) Automatic control of railway gates and destination notification system using internet of things (IoT). Int J Educ Manag Eng 7(5):45–55.  https://doi.org/10.5815/ijeme.2017.05.05CrossRefGoogle Scholar
  15. 15.
    Alakbarov GR, Hashimov MA (2018) Application and security issues of internet of things in oil-gas industry. Int J Educ Manag Eng 8(6):24–36.  https://doi.org/10.5815/ijeme.2018.06.03CrossRefGoogle Scholar
  16. 16.
    Mahadevaswamy UB (2018) Automatic IoT based plant monitoring and watering system using Raspberry Pi. Int J Eng Manuf 8(6):55–67.  https://doi.org/10.5815/ijem.2018.06.05CrossRefGoogle Scholar
  17. 17.
    Karakaya A, Akleylek S (2018) A survey on security threats and authentication approaches in wireless sensor networks. In: 6th international symposium on digital forensic and security, Antalya, Mar 2018, pp 1–4.  https://doi.org/10.1109/isdfs.2018.8355381
  18. 18.
    Astapenya VM, Sokolov VY (2017) Experimental evaluation of the shading effect of accelerating lens in azimuth plane. In: 11th international conference on antenna theory and techniques, Kyiv, May 2017, pp 388–390.  https://doi.org/10.1109/icatt.2017.7972671
  19. 19.
    Chatfield B, Haddad RJ (2017) RSSI-based spoofing detection in smart grid IEEE 802.11 home area networks. In: IEEE power & energy society innovative smart grid technologies conference, Washington, 2017, pp 1–5.  https://doi.org/10.1109/isgt.2017.8086064
  20. 20.
    Sokolov V, Carlsson A, Kuzminykh I (2017) Scheme for dynamic channel allocation with interference reduction in wireless sensor network. In: 4th international scientific-practical conference problems of infocommunications. Science and technology, Kharkiv, Oct 2017, pp 564–568.  https://doi.org/10.1109/infocommst.2017.8246463
  21. 21.
    Kuzminykh I, Carlsson A, Yevdokymenko M, Sokolov V (2019) Investigation of the IoT device lifetime with secure data transmission. In: Galinina O, Andreev S, Balandin S, Koucheryavy Y (eds) Internet of things, smart spaces, and next generation networks and systems. NEW2AN 2019, ruSMART 2019. Lecture notes in computer science, vol 11660. Springer, Cham, pp 16–27.  https://doi.org/10.1007/978-3-030-30859-9_2
  22. 22.
    Chakkor S, Cheikh EA, Baghouri M, Hajraoui A (2014) Efficiency evaluation metrics for wireless intelligent sensors applications. Int J Intell Syst Appl 6(10):1–10.  https://doi.org/10.5815/ijisa.2014.10.01CrossRefGoogle Scholar
  23. 23.
    Pololu Corporation (2015) Pololu Wixel user’s guide. https://www.pololu.com/docs/pdf/0J46/wixel.pdf. Accessed 15 Oct 2019
  24. 24.
    Python Software Foundation (2018) Python 3.6.6 Documentation. https://docs.python.org/3/download.html. Accessed 15 Oct 2019
  25. 25.
    Remington J (2011) Spectrum analyzer app code. https://forum.pololu.com/t/spectrum-analyzer-app-code/3394. Accessed 15 Oct 2019
  26. 26.
    Bogachuk I, Sokolov V, Buriachok V (2018) Monitoring subsystem for wireless systems based on miniature spectrum analyzers. In: 5th international scientific and practical conference problems of infocommunications. Science and technology, Kharkiv Oct 2018, pp 581–585.  https://doi.org/10.1109/infocommst.2018.8632151
  27. 27.
    Kryvinska N (2008) An analytical approach for the modeling of real-time services over IP network. Math Comput Simul 79(4):980–990.  https://doi.org/10.1016/j.matcom.2008.02.016MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Babatope LO, Babatunde L, Ayobami I (2014) Strategic sensor placement for intrusion detection in network-based IDS. Int J Intell Syst Appl 6(2):61–68.  https://doi.org/10.5815/ijisa.2014.02.08CrossRefGoogle Scholar
  29. 29.
    Kryvinska N (2004) Intelligent network analysis by closed queuing models. Telecommun Syst 27:85–98.  https://doi.org/10.1023/B:TELS.0000032945.92937.8fCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Central China Normal UniversityWuhanChina
  2. 2.Borys Grinchenko Kyiv UniversityKievUkraine
  3. 3.Kharkiv National University of Radio ElectronicsKharkivUkraine

Personalised recommendations