Advertisement

Output Feedback Encryption Mode: Periodic Features of Output Blocks Sequence

  • Alexandr KuznetsovEmail author
  • Yuriy Gorbenko
  • Ievgeniia Kolovanova
  • Serhii Smirnov
  • Iryna Perevozova
  • Tetiana Kuznetsova
Chapter
  • 5 Downloads
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 48)

Abstract

We investigate periodic characteristics of sequence of output blocks in the output feedback encryption mode. The model of random homogeneous substitution is used for an abstract description of this formation. This property is directly related to the periodic properties of output feedback encryption mode, since it characterizes the probabilistic distribution of output blocks with certain period appearance, provided that the assumption is made that the properties of the block symmetric cipher are consistent with certain properties of the random substitution. Also in the work specific practical tasks are solved, namely recommendations are being developed for the application of the outbound feedback on the encryption threshold, certain requirements and limitations are justified.

Keywords

Encryption mode Random substitution Periodic characteristics of output blocks Output feedback 

References

  1. 1.
    National Institute of Standards and Technology, Specification for the Data Encryption Standard (DES), Technical report NIST FIPS PUB 46-3, Department of Commerce, Oct 1999Google Scholar
  2. 2.
    National Institute of Standards and Technology, Specification for the Advanced Encryption Standard (AES), Technical report NIST FIPS PUB 197, Department of Commerce, Nov 2001Google Scholar
  3. 3.
    Anon, Information technology. Security techniques. Modes of operation for an n-bit cipher. Available at: http://dx.doi.org/10.3403/30062954
  4. 4.
    Elkamchouchi HM et al (2018). A new image encryption algorithm combining the meaning of location with output feedback mode. In: 2018 10th international conference on communication software and networks (ICCSN). Available at: http://dx.doi.org/10.1109/iccsn.2018.8488233
  5. 5.
    Kuznetsov A, Kolovanova I, Kuznetsova T (2017) Periodic characteristics of output feedback encryption mode. In: 2017 4th international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2017.8246378
  6. 6.
    Kuznetsov O, Gorbenko Y, Kolovanova I (2016) Combinatorial properties of block symmetric ciphers key schedule. In: 2016 3rd international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2016.7905334
  7. 7.
    Gorbenko I et al (2017) The research of modern stream ciphers. In: 2017 4th international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2017.8246381
  8. 8.
    Heys HM (2003) Analysis of the statistical cipher feedback mode of block ciphers. IEEE Trans Comput 52(1):77–92. Available at: http://dx.doi.org/10.1109/tc.2003.1159755
  9. 9.
    Menezes A, van Oorschot P, Vanstone S (1996) Handbook of applied cryptography. Discrete mathematics and its applications. Available at: http://dx.doi.org/10.1201/9781439821916
  10. 10.
    Ferguson N, Schneier B, Kohno T (2015) Introduction to cryptography. In: Cryptography engineering, pp 23–39. Available at: http://dx.doi.org/10.1002/9781118722367.ch2
  11. 11.
    Moskovchenko I et al (2018) Heuristic methods of hill climbing of cryptographic boolean functions. In: 2018 international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2018.8632017
  12. 12.
    Gorbenko I et al (2018) Experimental studies of the modern symmetric stream ciphers. In: 2018 international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2018.8632058
  13. 13.
    Kuznetsov A et al (2017) Analysis of block symmetric algorithms from international standard of lightweight cryptography ISO/IEC 29192-2. In: 2017 4th international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2017.8246380
  14. 14.
    Andrushkevych A et al (2018) A Prospective Lightweight Block Cipher for Green IT Engineering. In: Studies in systems, decision and control, pp 95–112. Available at: http://dx.doi.org/10.1007/978-3-030-00253-4_5
  15. 15.
    Jueneman RR (1983) Analysis of certain aspects of output feedback mode. Advances in cryptology, pp 99–127. Available at: http://dx.doi.org/10.1007/978-1-4757-0602-4_10
  16. 16.
    Altman J (2000) Telnet encryption: CAST-128 64 bit output feedback. Available at: http://dx.doi.org/10.17487/rfc2949
  17. 17.
    Ts’o T (2000) Telnet encryption: DES 64 bit output feedback. Available at: http://dx.doi.org/10.17487/rfc2953
  18. 18.
    Kuznetsov A et al (2018) Evaluation of algebraic immunity of modern block ciphers. In: 2018 IEEE 9th international conference on dependable systems, Services and Technologies (DESSERT). Available at: http://dx.doi.org/10.1109/dessert.2018.8409146
  19. 19.
    Кuznetsov OO et al (2018) Algebraic immunity of non-linear blocks of symmetric ciphers. Telecommun Radio Eng 77(4):309–325. Available at: http://dx.doi.org/10.1615/telecomradeng.v77.i4.30
  20. 20.
    Dong X (2008) Output feedback sliding mode control for a class of mismatched uncertain systems. In: 2008 27th Chinese control conference. Available at: http://dx.doi.org/10.1109/chicc.2008.4605032
  21. 21.
    Alsultanny YA (2008) Testing image encryption by output feedback (OFB). J Comput Sci 4(2):125–128. Available at: http://dx.doi.org/10.3844/jcssp.2008.125.128
  22. 22.
    Kuznetsov A et al (2018) Periodic properties of cryptographically strong pseudorandom sequences. In: 2018 international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2018.8632021
  23. 23.
    Asaad R et al (2017) Advanced encryption standard enhancement with output feedback block mode operation. Acad J Nawroz Univ 6(3):1–10. Available at: http://dx.doi.org/10.25007/ajnu.v6n3a70
  24. 24.
    Gorbenko I et al (2018) Strumok keystream generator. In: 2018 IEEE 9th international conference on dependable systems, Services and Technologies (DESSERT). Available at: http://dx.doi.org/10.1109/dessert.2018.8409147
  25. 25.
    Biryukov A, Chosen plaintext and chosen ciphertext attack. In: Encyclopedia of cryptography and security, pp 77–77. Available at: http://dx.doi.org/10.1007/0-387-23483-7_61
  26. 26.
    Meyer CH (1978) Ciphertext/plaintext and ciphertext/key dependence vs. number of rounds for the data encryption standard. In: Proceedings of the 1978 national computer conference, AFIPS Press, MontvaleGoogle Scholar
  27. 27.
    Kuznetsov A et al (2018) Research of cross-platform stream symmetric ciphers implementation. In: 2018 IEEE 9th international conference on dependable systems, Services and Technologies (DESSERT). Available at: http://dx.doi.org/10.1109/dessert.2018.8409148
  28. 28.
    Blakley GR (1979) Safeguarding cryptographic keys. In: Proceedings of the national computer conference, 1979. AFIPS Press, vol 47, pp 313–317Google Scholar
  29. 29.
    Hellman ME, Reyneri JM, The distribution of drainage and the DES. In: Advances in cryptography; proceedings of CRYPTO 82. Plenum Publishing Corp., 233 Spring Street, New York, NY 10013Google Scholar
  30. 30.
    Gait J (1977) A new non-linear pseudo-random number generator. IEEE Trans Softw Eng SE-3(5):359–363Google Scholar
  31. 31.
    Kuznetsov O et al (2018) Lightweight stream ciphers for green IT engineering. Studies in systems, decision and control, pp 113–137. Available at: http://dx.doi.org/10.1007/978-3-030-00253-4_6
  32. 32.
    Davies DW, Parkin GIP (1983) The average cycle size of the key stream in output feedback encipherment. In: Advances in cryptology, pp 97–98. Available at: http://dx.doi.org/10.1007/978-1-4757-0602-4_9
  33. 33.
    Kuznetsov O, Lutsenko M, Ivanenko D (2016) Strumok stream cipher: Specification and basic properties. In: 2016 3rd international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2016.7905335
  34. 34.
    Campbell C (1978) Design and specification of cryptographic capabilities. IEEE Commun Soc Mag 16(6):15–19. Available at: http://dx.doi.org/10.1109/mcom.1978.1089775
  35. 35.
    Orceyre M, Heller R (1978) An approach to secure voice communication based on the data encryption standard. IEEE Commun Soc Mag 16(6):41–50. Available at: http://dx.doi.org/10.1109/mcom.1978.1089785
  36. 36.
    Sachkov VN, Kolchin V (1996) Combinatorial methods in discrete mathematics. Available at: http://dx.doi.org/10.1017/cbo9780511666186
  37. 37.
    Sachkov VN, Vatutin VA (1997) Probabilistic methods in combinatorial analysis. Available at: http://dx.doi.org/10.1017/cbo9780511666193
  38. 38.
    Newman SC (2012) A classical introduction to galois theory. Available at: http://dx.doi.org/10.1002/9781118336816
  39. 39.
    Lisitskaya I, Grinenko T, Bezsonov S (2015) Differential and linear properties analysis of the ciphers rijndael, serpent, threefish with 16-bit inputs and outputs. East-Eur J Enterp Technol 54(77):50. Available at: http://dx.doi.org/10.15587/1729-4061.2015.51701
  40. 40.
    Li R, Sun B, Li C (2011) Impossible differential cryptanalysis of SPN ciphers. IET Inf Secur 5(2):111. Available at: http://dx.doi.org/10.1049/iet-ifs.2010.0174
  41. 41.
    Krasnobayev V et al (2018) Improved method of determining the alternative set of numbers in residue number system. In: Recent developments in data science and intelligent analysis of information, pp 319–328. Available at: http://dx.doi.org/10.1007/978-3-319-97885-7_31
  42. 42.
    Lisickiy K, Dolgov V, Lisickaya I (2017) Block cipher with improved dynamic indicators of the condition of a random substitution. In: 2017 4th international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2017.8246424
  43. 43.
    Zhang K, Guan J, Hu B (2016) Some properties of impossible differential and zero correlation linear cryptanalysis on TEA family-type ciphers. Secur Commun Netw 9(18):5746–5755. Available at: http://dx.doi.org/10.1002/sec.1733
  44. 44.
    Biryukov A, Cannière C, Linear cryptanalysis for block ciphers. In: Encyclopedia of cryptography and security, pp 351–354. Available at: http://dx.doi.org/10.1007/0-387-23483-7_233
  45. 45.
    Dolgov VI, Lisitska IV, Lisitskyi KY (2017) The new concept of block symmetric ciphers design. Telecommun Radio Eng 76(2):157–184. Available at: http://dx.doi.org/10.1615/telecomradeng.v76.i2.60
  46. 46.
    Lisickiy K, Dolgov V, Lisickaya I (2017) Cipher with improved dynamic indicators of the condition of a random substitution. In: 2017 4th international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2017.8246425
  47. 47.
    Rodinko M, Oliynykov R (2017) Open problems of proving security of ARX-based ciphers to differential cryptanalysis. In: 2017 4th international scientific-practical conference problems of infocommunications science and technology (PIC S&T). Available at: http://dx.doi.org/10.1109/infocommst.2017.8246385
  48. 48.
    Kuznetsov OO, Ivanenko DV, Kolovanova IP (2014) Analysis of collision properties of galois message authentication code with selective counter. Bull V. Karazin Kharkiv Natl Univ  1097(23):55–71 (Mathematical Modelling, Information Technology, Automated Control Systems) (In Russian)Google Scholar
  49. 49.
    DSTU 7624 (2014) Information technologies. Cryptographic data security. Symmetric block transformation algorithm. Available at: http://shop.uas.org.ua/ua/informacijni-tehnologii-kriptografichnij-zahist-informacii-algoritm-simetrichnogo-blokovogo-peretvorennja.html
  50. 50.
    A New Encryption Standard of Ukraine: The Kalyna Block Cipher. Cryptology ePrint Archive: report 2015/650. Available at: https://eprint.iacr.org/2015/650.pdf
  51. 51.
    Ageyev D et al (2018) Method of self-similar load balancing in network intrusion detection system. In: 2018 28th international conference radioelektronika (RADIOELEKTRONIKA). IEEE, pp 1–4.  https://doi.org/10.1109/radioelek.2018.8376406
  52. 52.
    Radivilova T, Hassan HA (2017) Test for penetration in Wi-Fi network: attacks on WPA2-PSK and WPA2-enterprise. In: 2017 international conference on information and telecommunication technologies and radio electronics (UkrMiCo), IEEE, pp 1–4Google Scholar
  53. 53.
    Lyudmyla K, Vitalii B, Tamara R (2017) Fractal time series analysis of social network activities. In: 2017 4th international scientific-practical conference problems of infocommunications science and technology (PIC S&T). IEEE, pp. 456–459.  https://doi.org/10.1109/infocommst.2017.8246438
  54. 54.
    Kirichenko L, Ivanisenko I, Radivilova T (2016) Dynamic load balancing algorithm of distributed systems. In: 2016 13th international conference on modern problems of radio engineering, telecommunications and computer science (TCSET), IEEE, 2016, pp 515–518Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.V. N. Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.Central Ukrainian National Technical UniversityKropyvnytskyiUkraine
  3. 3.Ivano-Frankivsk National Technical University of Oil and GasIvano-FrankivskUkraine

Personalised recommendations