Aerosolized Chemotherapy for Osteosarcoma

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1257)


Inhalation therapy remains a suitable approach to treat lung diseases including cancer. This approach has been used to deliver various therapies including chemotherapy. The rationale for using the inhalation route vs. the systemic route has been the fewer side effects encountered when drugs are administered via inhalation. Furthermore, this approach overcomes one of the major limitations of systemic chemotherapy that results from inability of the drug to reach high concentrations in the lungs. Local delivery overcomes this limitation and spares exposure of vital organs to the drug, resulting in a more effective delivery system.

Pulmonary metastasis of osteosarcoma (OS) remains a major cause of death and is very difficult to treat. Using various OS mouse models, we demonstrated that aerosol chemotherapy causes regression of pulmonary metastases and improves survival of mice with OS. In these studies, we used gemcitabine, a nucleoside analog that is effective against various solid tumors. An initial phase I study done in Europe in patients with primary lung cancer demonstrated aerosol gemcitabine therapy to be feasible and safe. In this chapter, we describe different chemotherapeutic agents delivered by inhalation to treat lung diseases with an emphasis on an ongoing study of aerosolized gemcitabine for patients with solid tumors and lung metastases developed at the MD Anderson Cancer Center that uses a convenient approach to track patient lung health with the ultimate goal of implementing this therapy at home.


Osteosarcoma Inhalation therapy Aerosol Gemcitabine Lung metastases 


  1. 1.
    Perkins SM et al (2014) Outcome for children with metastatic solid tumors over the last four decades. PLoS One 9(7):e100396CrossRefGoogle Scholar
  2. 2.
    Saraf AJ, Fenger JM, Roberts RD (2018) Osteosarcoma: accelerating progress makes for a hopeful future. Front Oncol 8:4CrossRefGoogle Scholar
  3. 3.
    Aylward RB, Burdge DR (1991) Ribavirin therapy of adult respiratory syncytial virus pneumonitis. Arch Intern Med 151(11):2303–2304CrossRefGoogle Scholar
  4. 4.
    Conte JE Jr et al (1990) Intravenous or inhaled pentamidine for treating Pneumocystis carinii pneumonia in AIDS. A randomized trial. Ann Intern Med 113(3):203–209CrossRefGoogle Scholar
  5. 5.
    Ramsey BW et al (1993) Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med 328(24):1740–1746CrossRefGoogle Scholar
  6. 6.
    Sharma S et al (2001) Development of inhalational agents for oncologic use. J Clin Oncol 19(6):1839–1847CrossRefGoogle Scholar
  7. 7.
    Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592CrossRefGoogle Scholar
  8. 8.
    Gagnadoux F et al (2008) Aerosolized chemotherapy. J Aerosol Med Pulm Drug Deliv 21(1):61–70CrossRefGoogle Scholar
  9. 9.
    Otterson GA et al (2007) Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin Cancer Res 13(4):1246–1252CrossRefGoogle Scholar
  10. 10.
    Lemarie E et al (2011) Aerosolized gemcitabine in patients with carcinoma of the lung: feasibility and safety study. J Aerosol Med Pulm Drug Deliv 24(6):261–270CrossRefGoogle Scholar
  11. 11.
    Kosmidis C et al (2019) Inhaled Cisplatin for NSCLC: facts and results. Int J Mol Sci 20(8)Google Scholar
  12. 12.
    Zarogoulidis P et al (2012) Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomedicine 7:1551–1572CrossRefGoogle Scholar
  13. 13.
    Cai M, Weng Y (2017) Lung injury following inhaled chemotherapy. Biomed Res India 28(7):3012–3016Google Scholar
  14. 14.
    Gordon N, Kleinerman ES (2010) Aerosol therapy for the treatment of osteosarcoma lung metastases: targeting the Fas/FasL pathway and rationale for the use of gemcitabine. J Aerosol Med Pulm Drug Deliv 23(4):189–196CrossRefGoogle Scholar
  15. 15.
    Gagnadoux F et al (2006) Gemcitabine aerosol: in vitro antitumor activity and deposition imaging for preclinical safety assessment in baboons. Cancer Chemother Pharmacol 58(2):237–244CrossRefGoogle Scholar
  16. 16.
    Gagnadoux F et al (2005) Safety of pulmonary administration of gemcitabine in rats. J Aerosol Med 18(2):198–206CrossRefGoogle Scholar
  17. 17.
    Knight V et al (2000) Anti-cancer activity of 9-nitrocamptothecin liposome aerosol in mice. Trans Am Clin Climatol Assoc 111:135–145PubMedPubMedCentralGoogle Scholar
  18. 18.
    Koshkina NV et al (2000) 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin Cancer Res 6(7):2876–2880PubMedGoogle Scholar
  19. 19.
    Koshkina NV et al (2001) Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin Cancer Res 7(10):3258–3262PubMedGoogle Scholar
  20. 20.
    Koshkina NV, Kleinerman ES (2005) Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases. Int J Cancer 116(3):458–463CrossRefGoogle Scholar
  21. 21.
    Rodriguez CO Jr et al (2010) Aerosol gemcitabine: preclinical safety and in vivo antitumor activity in osteosarcoma-bearing dogs. J Aerosol Med Pulm Drug Deliv 23(4):197–206CrossRefGoogle Scholar
  22. 22.
    Tatsumura T et al (1993) Further study of nebulization chemotherapy, a new chemotherapeutic method in the treatment of lung carcinomas – fundamental and clinical. Br J Cancer 68(6):1146–1149CrossRefGoogle Scholar
  23. 23.
    Verschraegen CF et al (2004) Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(S)-camptothecin in patients with advanced pulmonary malignancies. Clin Cancer Res 10(7):2319–2326CrossRefGoogle Scholar
  24. 24.
    Wittgen BPH et al (2007) Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res 13(8):2414–2421CrossRefGoogle Scholar
  25. 25.
    Chou AJ et al (2013) Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatr Blood Cancer 60(4):580–586CrossRefGoogle Scholar
  26. 26.
    Plunkett W et al (1995) Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 22(4 Suppl 11):3–10PubMedGoogle Scholar
  27. 27.
    Poplin E et al (2013) Randomized, multicenter, phase II study of CO-101 versus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma: including a prospective evaluation of the role of hENT1 in gemcitabine or CO-101 sensitivity. J Clin Oncol 31(35):4453–4461CrossRefGoogle Scholar
  28. 28.
    Niu J et al (2019) Insight into the role of autophagy in osteosarcoma and its therapeutic implication. Front Oncol 9:1232CrossRefGoogle Scholar
  29. 29.
    Santiago-O’Farrill JM et al (2018) Phosphorylated heat shock protein 27 as a potential biomarker to predict the role of chemotherapy-induced autophagy in osteosarcoma response to therapy. Oncotarget 9(2):1602–1616CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pediatrics ResearchMD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Pediatrics – Patient CareMD Anderson Cancer CenterHoustonUSA

Personalised recommendations