Advertisement

Freight Train Scheduling in Railway Systems

  • Rebecca HaehnEmail author
  • Erika Ábrahám
  • Nils Nießen
Conference paper
  • 75 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12040)

Abstract

Passenger train timetables in Europe are often periodical and predetermined for longer periods of time to facilitate the planning of travel. Freight train schedules, however, depend on the actual demand. Therefore it is a common problem in railway systems to schedule additional freight train requests, under consideration of a given timetable for passenger trains. In this paper, we present a model for railway systems that allows us to solve this scheduling problem as a constrained time-dependent shortest path problem. We adapt and implement an algorithm to solve this type of problems, examine our results, and discuss possible modifications and extensions to this approach.

References

  1. 1.
    Borndörfer, R., Fügenschuh, A., Klug, T., Schang, T., Schlechte, T., Schülldorf, H.: The freight train routing problem. Technical Report 13-36, ZIB (2013)Google Scholar
  2. 2.
    Burdett, R., Kozan, E.: Techniques for inserting additional trains into existing timetables. Transp. Res. Part B Methodol. 43(8), 821–836 (2009)CrossRefGoogle Scholar
  3. 3.
    Cacchiani, V., Caprara, A., Toth, P.: A column generation approach to train timetabling on a corridor. 4OR 6(2), 125–142 (2008).  https://doi.org/10.1007/s10288-007-0037-5MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cacchiani, V., Caprara, A., Toth, P.: Scheduling extra freight trains on railway networks. Transp. Res. Part B Methodol. 44(2), 215–231 (2010)CrossRefGoogle Scholar
  5. 5.
    Chabini, I.: Discrete dynamic shortest path problems in transportation applications: Complexity and algorithms with optimal run time. Transp. Res. Rec. 1645(1), 170–175 (1998)CrossRefGoogle Scholar
  6. 6.
    Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with waiting policies. Networks 44, 41–46 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
  8. 8.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  9. 9.
    El-Sherbeny, N.: The algorithm of the time-dependent shortest path problem with time windows. Appl. Math. 5(17), 2764–2770 (2014)CrossRefGoogle Scholar
  10. 10.
    El-Sherbeny, N.: The dynamic sortest path problems of minimum cost length time windows and time-varying costs. Int. J. Sci. Innov. Math. Res. 3(3), 47–55 (2015)Google Scholar
  11. 11.
    Fujimura, K.: Time-minimum routes in time-dependent networks. IEEE Trans. Rob. Autom. 11(3), 343–351 (1995)CrossRefGoogle Scholar
  12. 12.
    Halpern, J.: Shortest route with time dependent length of edges and limited delay possibilities in nodes. Zeitschrift für Oper. Res. 21(3), 117–124 (1977)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Halpern, J., Priess, I.: Shortest path with time constraints on movement and parking. Networks 4(3), 241–253 (1974)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks 21(3), 295–319 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pugliese, L.D.P., Guerriero, F.: A survey of resource constrained shortest path problems: Exact solution approaches. Networks 62(3), 183–200 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Statistisches Bundesamt: Beförderungsmenge und Beförderungsleistung nach Verkehrsträgern (in German). https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Transport-Verkehr/Gueterverkehr/Tabellen/gueterbefoerderung-lr.html. Accessed 24 June 2019
  18. 18.
    Thomas, B.W., Calogiuri, T., Hewitt, M.: An exact bidirectional A* approach for solving resource-constrained shortest path problems. Networks 73(2), 187–205 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Union Internationale des Chemins de fer: UIC Code 406, Capacity (2004)Google Scholar
  20. 20.
    Weiß, R., Opitz, J., Nachtigall, K.: A novel approach to strategic planning of rail freight transport. In: Helber, S., et al. (eds.) Operations Research Proceedings 2012. ORP, pp. 463–468. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-00795-3_69CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations