Advertisement

Graph-Based Mobility Models: Asymptotic and Stationary Node Distribution

  • Hans DadunaEmail author
Conference paper
  • 59 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12040)

Abstract

Under standard assumptions on the stochastic behaviour of mobile nodes in a graph-based mobility model we derive the stationary distribution for the network. This distribution describes as well the asymptotic behaviour of the system. We consider closed (fixed number of moving nodes) as well as open (nodes arrive and depart from the graph-structured area) systems. The stationary state shows that these graph-based models for mobile nodes are separable, i. e. the stationary distribution is for the open system the product of independent coordinate processes and for the closed system holds conditional independence.

Keywords

Mobility models MANET Stationary state Separability 

References

  1. 1.
    Barbour, A.D.: Networks of queues and the method of stages. Adv. Appl. Probab. 8, 584–591 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains, 2nd edn. Wiley, New York (2006)CrossRefGoogle Scholar
  3. 3.
    Bruell, S.C., Balbo, G.: Computational Algorithms for Closed Queueing Networks. North-Holland, New York (1980)zbMATHGoogle Scholar
  4. 4.
    Baskett, F., Chandy, M., Muntz, R., Palacios, F.G.: Open, closed and mixed networks of queues with different classes of customers. J. Assoc. Comput. Mach. 22, 248–260 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bai, F., Helmy, A.: A survey of mobility models in wireless adhoc networks. In: Wireless Ad-Hoc Networks, chap. 1, pp. 1–30. Kluwer Academic Publisher, Dordrecht (2006)Google Scholar
  6. 6.
    Bettstetter, C., Resta, G., Santi, P.: The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Trans. Mob. Comput. 2(3), 257–269 (2003)CrossRefGoogle Scholar
  7. 7.
    Daduna, H.: Moving queue on a network. In: Remke, A., Haverkort, B.R. (eds.) MMB&DFT 2016. LNCS, vol. 9629, pp. 40–54. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31559-1_5CrossRefGoogle Scholar
  8. 8.
    Daduna, H., Szekli, R.: Impact of routeing on correlation strength in stationary queueing networks processes. J. Appl. Probab. 45, 846–878 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kelly, F.: Networks of queues. Adv. Appl. Probab. 8, 416–432 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Chichester/New York/Brisbane/Toronto (1979)zbMATHGoogle Scholar
  11. 11.
    Kraaier, J., Killat, U.: Calculating mobility parameters for a predefined stationary user distribution. In: Proceedings of 2004 12th IEEE International Conference on Networks (ICON 2004) (IEEE Cat. No.04EX955), vol. 1, pp. 41–45, November 2004Google Scholar
  12. 12.
    Kraaier, J., Killat, U.: The random waypoint city model : User distribution in a street-based mobility model for wireless network simulations. In: Proceedings of the 3rd ACM International Workshop on Wireless Mobile Applications and Services on WLAN Hotspots, WMASH 2005, p. 100–103. ACM, New York (2005)Google Scholar
  13. 13.
    Kraaier, J., Killat, U.: Controlling the stationary distribution of mobile users in wireless network simulations. In: 2007 IEEE 66th Vehicular Technology Conference, pp. 804–808 (2007)Google Scholar
  14. 14.
    Kriege, J.: Combining mobility models with arrival processes. In: Remke, A., Haverkort, B.R. (eds.) MMB&DFT 2016. LNCS, vol. 9629, pp. 107–121. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-31559-1_10CrossRefGoogle Scholar
  15. 15.
    Le Boudec, J., Vojnovic, M.: Perfect simulation and stationarity of a class of mobility models. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 4, pp. 2743–2754, March 2005Google Scholar
  16. 16.
    Navidi, W., Camp, T.: Stationary distribution for the random waypoint mobility model. IEEE Trans. Mob. Comput. 3(1), 99–108 (2004)CrossRefGoogle Scholar
  17. 17.
    Navidi, W., Camp, T., Bauer, N.: Improving accuracy of random waypoint simulations through steady-state initialization. Technical report, Colorado School of Mines, Golden, CO, June 2006Google Scholar
  18. 18.
    Nikoletseas, S., Rolim, J.D.P.: Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-14849-1CrossRefzbMATHGoogle Scholar
  19. 19.
    Roy, R.R.: Handbook of Mobile Ad Hoc Networks for Mobility Models. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-1-4419-6050-4CrossRefzbMATHGoogle Scholar
  20. 20.
    Schassberger, R.: Warteschlangen. Springer, Wien (1973)CrossRefGoogle Scholar
  21. 21.
    Schwamborn, M., Aschenbruck, N.: On modeling and impact of geographic restrictions for human mobility in opportunistic networks. Perform. Eval. 130, 17–31 (2019)CrossRefGoogle Scholar
  22. 22.
    Stepanov, I., Marron, P.J., Rothermel, K.: Mobility modeling of outdoor scenarios for manets. In: Proceedings of the 38th Annual Symposium on Simulation, ANSS 2005, pp. 312–322. IEEE Computer Society, Washington (2005)Google Scholar
  23. 23.
    Simatos, F., Tibi, D.: Study of a stochastic model for mobile networks. SIGMETRICS Perform. Eval. Rev. 36(2), 122–124 (2008)CrossRefGoogle Scholar
  24. 24.
    Tian, J., Hähner, J., Becker, C., Stepanov, I., Rothermel, K.: Graph-based mobility model for mobile ad hoc network simulation. In: Proceedings of the 35th Annual Simulation Symposium, SS 2002, pp. 337–344. IEEE Computer Society, Washington (2002)Google Scholar
  25. 25.
    Wang, Y., Dang, H., Wu, H.H.: A survey on analytic studies of delay-tolerant mobile sensor networks. Wirel. Commun. Mob. Comput. 7(10), 1197–1208 (2007)CrossRefGoogle Scholar
  26. 26.
    Wu, H., Wang, Y., Dang, H., Lin, F.: Analytic, simulation, and empirical evaluation of delay/fault-tolerant mobile sensor networks. IEEE Trans. Wirel. Commun. 6(9), 3287–3296 (2007)CrossRefGoogle Scholar
  27. 27.
    Yoon, J., Liu, M., Noble, B.: A general framework to construct stationary mobility models for the simulation of mobile networks. IEEE Trans. Mob. Comput. 5(7), 1–12 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsHamburg UniversityHamburgGermany

Personalised recommendations