Advertisement

Inequalities for Curve and Surface Integrals

  • Zlatko PavićEmail author
Conference paper
  • 28 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 123)

Abstract

We deal with double inequalities that contain convex combinations and integral arithmetic means. This approach involves the connection between the Jensen and Hermite-Hadamard inequalities. As a result, we get very general inequalities that can be applied to curve and surface integrals.

Keywords

Convex function Curve integral Surface integral 

References

  1. 1.
    Abate, M., Tovena, F.: Curves and Surfaces. Springer, Milan (2012).  https://doi.org/10.1007/978-88-470-1941-6CrossRefzbMATHGoogle Scholar
  2. 2.
    Bessenyei, M.: The Hermite-Hadamard inequality on simplices. Am. Math. Mon. 115, 339–345 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Driver, B.K.: Surfaces, Surface Integrals and Integration by Parts. http://www.math.ucsd.edu/~bdriver/231-02-03/Lecture_Notes/pde8.pdf
  4. 4.
    Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considerée par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)zbMATHGoogle Scholar
  5. 5.
    Hermite, C.: Sur deux limites d’une intégrale définie. Mathesis 3, 82 (1883)Google Scholar
  6. 6.
    Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2013).  https://doi.org/10.1007/978-0-387-21752-9CrossRefzbMATHGoogle Scholar
  8. 8.
    Mitroi, F.-C., Spiridon, C.I.: Refinements of Hermite-Hadamard inequality on simplices. Math. Rep. (Bucur.) 15, (2013). arXiv:1105.5043
  9. 9.
    Neuman, E.: Inequalities involving multivariate convex functions II. Proc. Am. Math. Soc. 109, 965–974 (1990)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Pavić, Z.: Improvements of the Hermite-Hadamard inequality for the simplex. J. Inequal. Appl. 2017, 3 (2017). Article 3MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pavić, Z.: The Jensen and Hermite-Hadamard inequality on the triangle. J. Math. Inequal. 11, 1099–1112 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tu, L.W.: An Introduction to Manifolds. Springer, New York (2011).  https://doi.org/10.1007/978-1-4419-7400-6CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mechanical Engineering Faculty in Slavonski BrodUniversity of OsijekSlavonski BrodCroatia

Personalised recommendations