Advertisement

Chalcogenides

  • R. A. EvarestovEmail author
Chapter
  • 67 Downloads
Part of the NanoScience and Technology book series (NANO)

Abstract

The layered transition metal disulfides MS\(_2\) (M\(\,=\,\)Mo, W, Ti, Zr) have attracted considerable attention because of their unique electronic features resulting in numerous applications in catalysis, electrochemical intercalation, and hydrogen storage technology [1, 2]. The rapidly developing nanotechnology offers great opportunities to improve the performance of MS\(_2\)-based hydrogen storage materials and rechargeable batteries.

References

  1. 1.
    F. Cheng, J. Chen, J. Mater. Res. 21, 2744 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    R. Tenne, in Nanotubes and Nanofibers, ed. by Y. Gogotsi (Taylor and Francis Group, Boca Raton, 2008), pp. 135–155Google Scholar
  3. 3.
    W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Mater. Today 20, 116 (2017)Google Scholar
  4. 4.
    L.A. Chernozatonskii, A.A. Artyukh, Physics-Uspekhi 61, 2 (2018)Google Scholar
  5. 5.
    N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, Nat. Nanotechnol. 13, 246 (2018)Google Scholar
  6. 6.
    N.A. Pike, A. Dewandre, B. Van Troeye, X. Gonze, M.J. Verstraete, Phys. Rev. Mater. 2, 063608 (2018)Google Scholar
  7. 7.
    R.A. Evarestov, Theoretical Modeling of Inorganic Nanostructures (Springer, Berlin, 2015)CrossRefGoogle Scholar
  8. 8.
    I. Kaplan-Ashiri, R. Tenne, JOM 68, 151 (2016)Google Scholar
  9. 9.
    A.S. Golub, Ya.V. Zubavichus, Yu.L. Slovokhotov, Yu.N. Novikov, Russ. Chem. Rev. 72, 123 (2003)Google Scholar
  10. 10.
    K. Kobayashi, J. Yamauchi, Phys. Rev. B 51, 17085 (1995)Google Scholar
  11. 11.
    A.H. Reshak, S. Auluck, Phys. Rev. B 71, 155114 (2005)Google Scholar
  12. 12.
    C. Li, W.L. Guo, Y. Kong, H. Gao, Phys. Rev. B 76, 35322 (2007)Google Scholar
  13. 13.
    S. Lebegue, O. Eriksson, Phys. Rev. B 79, 115409 (2009)Google Scholar
  14. 14.
    L. Wei, C. Jun-fang, H. Qinyu, W. Teng, Phys. B 405, 2498 (2010)Google Scholar
  15. 15.
    H. Guo, T. Yang, P. Tao, Y. Wang, Z. Zhang, J. Appl. Phys. 113, 013709 (2013)Google Scholar
  16. 16.
    S. Zhao, J. Hue, W. Kang, Chem. Phys. Lett. 595, 35 (2014)Google Scholar
  17. 17.
    A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, W. Jaegermann, Phys. Rev. B 64, 205416 (2001)Google Scholar
  18. 18.
    K. Albe, A. Klein, Phys. Rev. B 66, 073413 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    G. Arora, Y. Sharma, V. Sharma, G. Ahmed, S.K. Srivastava, B.L. Ahuja, J. Alloy. Compd. 470, 452 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 83, 245213 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    N. Zibouche, A. Kuca, T. Heine, Eur. Phys. J. B 85, 49 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    F. Hulliger, in Structural Chemistry of Layer Type Phases, ed. by F. Levy (1976)Google Scholar
  23. 23.
    W.J. Schutte, J.L. de Boer, F. Jellinek, J. Solid State Chem. 70, 207 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    R.A. Evarestov, A.V. Bandura, J. Comput. Chem. 39, 2163 (2018)CrossRefGoogle Scholar
  25. 25.
    R.A. Evarestov, A.V. Bandura, V.V. Porsev, A.V. Kovalenko, J. Comput. Chem. 38, 2581 (2017)CrossRefGoogle Scholar
  26. 26.
    R. Shidpour, M. Manteghian, Chem. Phys. 360, 97 (2009)CrossRefGoogle Scholar
  27. 27.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    R. Gaillac, P. Pullumbi, F.-X. Coudert, J. Phys. Condens. Matter 28, 275201 (2016)CrossRefGoogle Scholar
  29. 29.
    P. Raybaud, J. Hafner, G. Kresse, H. Toulhoat, J. Phys. Condens. Matter 9, 11107 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, J. Lou, ACS Nano 11, 8192 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Nano Lett. 12, 5576 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13, 3447 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Elías, C.I. Chia, B. Wang, V.H. Crespi, F. Lopez-Urías, J-.C. Charlier, H. Terrones, M. Terrones, Sci. Rep. 3, 1755 (2013)Google Scholar
  34. 34.
    H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, X. Cui, Sci. Rep. 3, 1608 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Nano Lett. 12, 3187 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    H.G. Fuchtbauer, A.K. Tuxen, P.G. Moses, H. Topsoe, F. Besenbachera, J.V. Lauritsen, Phys. Chem. Chem. Phys. 15, 15971 (2013)CrossRefGoogle Scholar
  38. 38.
    H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Latte, R. Datta, S.K. Patti, C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)CrossRefGoogle Scholar
  39. 39.
    C. Ataca, S. Ciraci, J. Phys. Chem. C 115, 13303 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Molina-Sanchez, L. Wirtz, Phys. Rev. B 84, 155413 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    N. Singh, G. Jabbour, U. Schwingenschlogl, Eur. Phys. J. B 85, 392 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    E.S. Kadantsev, P. Hawrylak, Solid State Commun. 152, 909 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    T. Cheiwchanchamnangij, W.R.L. Lambrecht, Phys. Rev. B 85, 205302 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    J. Wei, Z. Ma, H. Zeng, Z. Wang, Q. Wei, P. Peng, AIP Adv. 2, 042141 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    K. Kosmider, J. Fernandez-Rossier, Phys. Rev. B 87, 075451 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Appl. Phys. Lett 102, 012111 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    I. Milošević, T. Vuković, M. Damnjanović, B. Nikolić, Eur. Phys. J. B 17, 707 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    M. Damnjanović, T. Vuković, I. Milošević, Isr. J. Chem. 57, 450 (2017)CrossRefGoogle Scholar
  50. 50.
    R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360, 444 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    R. Tenne, M. Homyonfer, Y. Feldman, Chem. Mater. 10, 3225 (1998)Google Scholar
  52. 52.
    A. Rothschild, R. Popovitz-Biro, O. Lourie, R. Tenne, J. Phys. Chem. B 104, 8976 (2000)Google Scholar
  53. 53.
    A. Margolin, F.L. Deepak, R. Popovitz-Biro, M. Bar-Sadan, Y. Feldman, R. Tenne, Nanotechnology 19, 095601 (2008)Google Scholar
  54. 54.
    R. Tenne, Nat. Nanotechnol. 1, 103 (2006)Google Scholar
  55. 55.
    R. Tenne, M. Remkar, A.N. Enyashin, G. Seifert, in Carbon Nanotubes, Topics in Applied Physics, vol. 111, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, 2008), pp. 631–671Google Scholar
  56. 56.
    R. Tenne, G. Seifert, Annu. Rev. Mater. Res. 39, 387 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    R. Tenne, M. Redlich, Chem. Soc. Rev. 39, 1423 (2010)Google Scholar
  58. 58.
    R. Levi, M. Bar-Sadan, R. Tenne, in Springer Handbook for Nanomaterials, ed. by R. Vajtai (Springer, Berlin, 2013). Chapter 16Google Scholar
  59. 59.
    G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85, 146 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D’Arco, M. Llunell, CRYSTAL09 User’s Manual (University of Torino, Torino, 2010)Google Scholar
  61. 61.
    I. Milošević, B. Nikolić, E. Dobardzic, M. Damnjanović, I. Popov, G. Seifert, Phys. Rev. B 76, 233414 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, PNAS 103, 523 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    E.W. Bucholz, S.B. Sinnott, J. Appl. Phys. 112, 123510 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    T. Lorenz, D. Teich, J.-O. Joswig, G. Seifert, J. Phys. Chem. C 116, 11714 (2012)CrossRefGoogle Scholar
  65. 65.
    V.V. Ivanovskaya, T. Heine, S. Gemming, G. Seifert, Phys. Status Solidi (B) 243, 1757 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    A.N. Enyashin, Y.N. Makurin, A.L. Ivanovskii, Dokl. Phys. Chem. 399, 293 (2004)CrossRefGoogle Scholar
  67. 67.
    A.N. Enyashin, V.V. Ivanovskaya, A.L. Ivanovskii, Mendeleev Commun. 107, 94 (2004)CrossRefGoogle Scholar
  68. 68.
    M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, D. Mihailovic, Science 292, 479 (2001)ADSCrossRefGoogle Scholar
  69. 69.
    M. Verstraete, J.-C. Charlier, Phys. Rev. B 68, 045423 (2003)ADSCrossRefGoogle Scholar
  70. 70.
    R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D’Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rerat, S. Casassa, CRYSTAL17 User’s Manual (University of Turin, Torino, Italy, 2017)Google Scholar
  71. 71.
    R.B. Ross, J.M. Powers, T. Atashroo, W.C. Ermler, L.A. LaJohn, P.A. Christiansen, J. Chem. Phys. 65, 6654 (1990)ADSCrossRefGoogle Scholar
  72. 72.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSCrossRefMathSciNetGoogle Scholar
  74. 74.
    C. Conesa, J. Phys. Chem. C 114, 22718 (2010)CrossRefGoogle Scholar
  75. 75.
    F. Pascale, C.M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Orlando, R. Dovesi, J. Comput. Chem.25, 888 (2004)Google Scholar
  76. 76.
    Database “Thermal Constants of Substances” (Russ.) (2019), http://www.chem.msu.su/cgi-bin/tkv.plshow=welcome.html. Accessed 15 June 2019
  77. 77.
    Y. Cheng, Z. Zhu, U. Schwingenschogl, RSC Adv. 2, 7798 (2012)CrossRefGoogle Scholar
  78. 78.
    S. Ahmad, S. Mukherjee, Graphene 3, 52 (2014)CrossRefGoogle Scholar
  79. 79.
    S.S. Gronborg, S. Ulstrup, M. Bianchi, M. Dendzik, C.E. Sanders, J.V. Lauritsen, P. Hofmann, J.A. Miwa, Langmuir 31, 9700 (2015)CrossRefGoogle Scholar
  80. 80.
    Y. Cai, J. Lan, G. Zhang, Y.W. Zhang, Phys. Rev. B 89, 035438 (2014)ADSCrossRefGoogle Scholar
  81. 81.
    Bilbao Crystallographic Server. The Crystallographic Site at the Condensed Matter (Physics Department of the University of the Basque Country), http://www.cryst.ehv.es/
  82. 82.
    H.A. Jahn, E. Teller, Proc. R. Soc. Lond. A 161, 220 (1937)ADSCrossRefGoogle Scholar
  83. 83.
    R.S. Mulliken, Phys. Rev. 43, 279 (1933)ADSCrossRefGoogle Scholar
  84. 84.
    T. Damnjanovic, I. Vukovic, Miloševic. Isr. J. Chem. 57, 450 (2017)CrossRefGoogle Scholar
  85. 85.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ASC Nano 4, 2695 (2010)CrossRefGoogle Scholar
  86. 86.
    T.J. Wieting, J.L. Verble, Phys. Rev. B 3, 4286 (1971)ADSCrossRefGoogle Scholar
  87. 87.
    M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A.F. Oliveira, A. Kuc, T. Heine, Sci. Rep. 3, 2961 (2013)ADSCrossRefGoogle Scholar
  88. 88.
    H. Lin, X. Chen, H. Li, M. Yang, Y. Qi, Mater. Lett. 64, 1748 (2010)CrossRefGoogle Scholar
  89. 89.
    G.A. Camacho-Bragado, J.L. Elechiguerra, A. Olivas, S. Fuentes, D. Galvanb, M.J. Yacaman, J. Catal. 234, 182 (2005)CrossRefGoogle Scholar
  90. 90.
    C. Zhang, H.B. Wu, Z. Guo, X.W. (David) Lou, Electrochem. Commun. 20, 7 (2012)Google Scholar
  91. 91.
    M. Albiter, R. Huirache-Acuna, F. Paraguay-Delgado, J.L. Rico, G. Alonso-Nunez, Nanotechnology 17, 3473 (2006)ADSCrossRefGoogle Scholar
  92. 92.
    Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, Z. Wang, Mater. Lett. 59, 3452 (2005)CrossRefGoogle Scholar
  93. 93.
    S. Sun, Z. Li, X. Chang, Mater. Lett. 65, 3164 (2011)CrossRefGoogle Scholar
  94. 94.
    G. Tang, H. Tang, C. Li, W. Li, X. Ji, Mater. Lett. 65, 3457 (2011)CrossRefGoogle Scholar
  95. 95.
    P.K. Panigrahi, A. Pathak, Sci. Technol. Adv. Mater. 9, 045008 (2008)CrossRefGoogle Scholar
  96. 96.
    J. Kibsgaard, A. Tuxen, M. Levisen, E. Lagsgaard, S. Gemming, G. Seifert, J.V. Lauritsen, F. Besenbacher, Nano Lett. 8, 3928 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    I. Popov, S. Gemming, S. Okano, N. Ranjan, G. Seifert, Nano Lett. 8, 4093 (2008)ADSCrossRefGoogle Scholar
  98. 98.
    H. Schweiger, P. Raybaud, G. Kresse, H. Toulhoat, J. Catal. 207, 76 (2002)CrossRefGoogle Scholar
  99. 99.
    L.F. Seivane, H. Barron, S. Botti, M.A.L. Marques, A. Rubio, X.X. Lopez-Lozano, J. Mater. Res. 28, 240 (2013)ADSCrossRefGoogle Scholar
  100. 100.
    A.R. Botello-Mendez, F. Lopez-Urias, M. Terrones, H. Terrones, Nanotechnology 20, 325703 (2009)CrossRefGoogle Scholar
  101. 101.
    Y. Li, Z. Zhou, S. Zhang, Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008)CrossRefGoogle Scholar
  102. 102.
    R. Shidpour, M. Manteghian, Nanoscale 2, 1429 (2010)Google Scholar
  103. 103.
    C. Ataca, H. Sahin, E. Akturk, S. Ciraci, J. Phys. Chem. C 115, 3934 (2011)Google Scholar
  104. 104.
    Z. Wang, K. Zhao, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.-K. Joung, T. Okazaki, Z. Jin, Z. Gu, Z. Gao, J. Mater. Chem. 21, 171 (2011)Google Scholar
  105. 105.
    H. Pan, Y.-W. Zhang, J. Mater. Chem. 22, 7280 (2012)Google Scholar
  106. 106.
    E. Erdogan, I.H. Popov, A.N. Enyashin, G. Seifert, Eur. Phys. J. B 85, 33 (2012)Google Scholar
  107. 107.
    Q. Yue, S. Chang, J. Kang, X. Zhang, Z. Shao, S. Qin, J. Li, J. Phys.: Condens. Matter 24, 335501 (2012)Google Scholar
  108. 108.
    H. Zhang, X.-B. Li, L.-M. Liu, J. Appl. Phys. 114, 093710 (2013)Google Scholar
  109. 109.
    S. Prabakar, C.W. Bumby, R.D. Tilley, Chem. Mater. 21, 1725 (2009)Google Scholar
  110. 110.
    J. Chen, S.-L. Li, Z.-L. Tao, Y.-T. Shen, C.-X. Cui, J. Am. Chem. Soc. 125, 5284 (2003)Google Scholar
  111. 111.
    J. Chen, S.-L. Li, Z.-L. Tao, F. Gao, Chem. Commun. 8, 980 (2003)Google Scholar
  112. 112.
    M. Nath, C.N.R. Rao, Angew. Chem. Int. Ed. 41, 3451 (2002)Google Scholar
  113. 113.
    D. Zhang, P. Liu, C. Liu, J. Phys. Chem. C 112, 16729 (2008)Google Scholar
  114. 114.
    J. Jang, S. Jeong, J. Seo, M.-C. Kim, E. Sim, Y. Oh, S. Nam, B. Park, J. Cheon, J. Am. Chem. Soc. 133, 7636 (2011)Google Scholar
  115. 115.
    Y.Q. Zhu, W.K. Hsu, N. Grobert, B.H. Chang, M. Terrones, H. Terrones, H.W. Kroto, D.R.M. Walton, Chem. Mater. 12, 1190 (2000)Google Scholar
  116. 116.
    R.A. Evarestov, A.V. Bandura, Phys. Scr. 89, 044001 (2014)Google Scholar
  117. 117.
    P. Lightfoot, F. Krok, J.L. Nowinski, P.G. Bruce, J. Mater. Chem. 2, 139 (1992)Google Scholar
  118. 118.
    Y.G. Yu, N.L. Ross, J. Phys.: Condens. Matter 23, 055401 (2011)Google Scholar
  119. 119.
    H. Jiang, J. Chem. Phys. 134, 204705 (2011)Google Scholar
  120. 120.
    K. Sanchez, P. Palacios, P. Wahnon, Phys. Rev. B 78, 235121 (2008)Google Scholar
  121. 121.
    C.M. Fang, R.A. de Groot, C. Haas, Phys. Rev. B 56, 4455 (1997)Google Scholar
  122. 122.
    C.A. Kukkonen, W.J. Kaiser, E.M. Logothetis, B.J. Blumenstock, P.A. Schroeder, S.P. Faile, R. Colella, J. Gambold, Phys. Rev. B 24, 1691 (1981)Google Scholar
  123. 123.
    R.H. Friend, D. Jerome, W.Y. Liang, C. Mikkelsen, A.D. Yoffe, J. Phys. C: Solid State Phys. 10, L705 (1977)Google Scholar
  124. 124.
    D.R. Allan, A.A. Kelsey, S.J. Clark, R.J. Angel, G.J. Ackland, Phys. Rev. B 57, 5106 (1998)Google Scholar
  125. 125.
    M. Moustafa, T. Zandt, C. Janowitz, R. Manzke, Phys. Rev. B 80, 035206 (2009)Google Scholar
  126. 126.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)Google Scholar
  127. 127.
    C.Y. Chen, W. Fabian, F.C. Brown, K.C. Woo, B. Davies, B. DeLong, A.H. Thompson, Phys. Rev. B 21, 615 (1980)Google Scholar
  128. 128.
    J.R. Dahn, W.R. McKinnon, R.R. Haering, W.J.L. Buyers, B.M. Powell, Can. J. Phys. 58, 207 (1980)Google Scholar
  129. 129.
    V.P. Glushko, V.A. Medvedev, L.V. Gurvich (eds.), Thermal Constants of Substances (Wiley, New York, 1999)Google Scholar
  130. 130.
    G. Haegg, N. Schoenberg, Arkiv fur kemi 7, 371 (1954)Google Scholar
  131. 131.
    A.N. Enyashin, A.L. Ivanovskii, Inorg. Mater. 41, 1118 (2005)Google Scholar
  132. 132.
    V.V. Ivanovskaya, A.N. Enyashin, N.I. Medvedeva, Y.N. Makurin, A.L. Ivanovskii, Internet Electron. J. Mol. Des. 2, 499 (2003)Google Scholar
  133. 133.
    V.V. Ivanovskaya, G. Seifert, Solid State Commun. 130, 175 (2004)Google Scholar
  134. 134.
    V.V. Ivanovskaya, G. Seifert, A.L. Ivanovskii, Semiconductors 39, 1058 (2005)Google Scholar
  135. 135.
    D. Teich, T. Lorenz, J.-O. Joswig, G. Seifert, D.-B. Zhang, T. Dumitrica, J. Phys. Chem. C 115, 6392 (2011)Google Scholar
  136. 136.
    K. Tibbetts, R. Doe, G. Ceder, Phys. Rev. B 80, 014102 (2009)Google Scholar
  137. 137.
    A.V. Domnin, A.V. Bandura, R.A. Evarestov, J. Comput. Chem. 41759 (2020)Google Scholar
  138. 138.
    T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, Y. Miyamoto, Sci. Rep. 6, 22277 (2016)Google Scholar
  139. 139.
    D. Singh, S.K. Gupta, Y. Sonvane, A. Kumar, R. Ahuja, Cat. Sci. Technol. 6, 6605 (2016)Google Scholar
  140. 140.
    M. Nath, C.N.R. Rao, Pure Appl. Chem. 74, 1545 (2002)Google Scholar
  141. 141.
    B. Zheng, Y. Chen, Z. Wang, F. Qi, Z. Huang, X. Hao, P. Li, W. Zhang, Y. Li, 2D Mater., 3, 035034 (2016)Google Scholar
  142. 142.
    A.V. Bandura, V.V. Porsev, R.A. Evarestov, J. Comput. Chem. 37, 641 (2016)Google Scholar
  143. 143.
    R.A. Evarestov, A.V. Bandura, V.V. Porsev, Lith. J. Phys. 56, 164 (2016)Google Scholar
  144. 144.
    V.S. Yungman, V.P. Glushko, V.A. Medvedev, L.V. Gurvich (eds.), Thermal Constants of Substances, vol. 5 (Part VII, Wiley, New York, NY, 1999)Google Scholar
  145. 145.
    N. Glebko, I. Aleksandrova, G.C. Tewari, T.S. Tripathi, M. Karppinen, A.J. Karttunen, J. Phys. Chem. C 122, 26835 (2018)Google Scholar
  146. 146.
    Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, X. Xu, Phys. Status Solidi (b) Basic Res., 1700033, 254 (2017)Google Scholar
  147. 147.
    M. Abdulsalam, D. P. Joubert, Phys. Status Solidi (b) Basic Res., 253, 705 (2016)Google Scholar
  148. 148.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)Google Scholar
  149. 149.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006)Google Scholar
  150. 150.
    M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)Google Scholar
  151. 151.
    P. Bultinck, C. Van Alsenoy, P.W. Ayers, R. Carbó-Dorca, J. Chem. Phys. 126, 144111 (2007)Google Scholar
  152. 152.
    A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009)Google Scholar
  153. 153.
    R.A. Evarestov, A.V. Bandura, J. Comput. Chem. 39, 2163 (2018)Google Scholar
  154. 154.
    M. Salavati, Front. Struct. Civ. Eng. 13, 486 (2019)Google Scholar
  155. 155.
    C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, K. Cho, Appl. Phys. Lett., 103, 053513 (2013) Erratum: Appl. Phys. Lett., 107, 139904 (2015)Google Scholar
  156. 156.
    H.L. Zhuang, R.G. Hennig, J. Phys. Chem. C 117, 20440 (2013)Google Scholar
  157. 157.
    L. Roubi, C. Carlone, Phys. Rev. B 37, 6808 (1988)Google Scholar
  158. 158.
    H. Xiang, B. Xu, W. Zhao, Y. Xia, J. Yin, X. Zhang, Z. Liu, RSC Adv. 9, 13561 (2019)Google Scholar
  159. 159.
    J. Chen, Solid State Commun. 237, 14 (2016)Google Scholar
  160. 160.
    R.A. Evarestov, A.V. Bandura, J. Comput. Chem. 39, 2163 (2018)Google Scholar
  161. 161.
    M. Damnjanovic, I. Milosevic, Line Groups in Physics: Theory and Applications to Nanotubes and Polymers (Springer, Berlin, Germany, 2010)CrossRefGoogle Scholar
  162. 162.
    R.A. Evarestov, A.I. Panin, J. Comput. Chem. 36, 957 (2015)Google Scholar
  163. 163.
    R. A. Evarestov, Quantum Chemistry of Solids. LCAO Treatment of Crystals and Nanostructures, 2nd ed., Springer, Berlin, Heidelberg, 2012Google Scholar
  164. 164.
    R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, WIREs Comput. Mol. Sci. 8, e1360 (2018)Google Scholar
  165. 165.
    R.A. Evarestov, A.V. Bandura, V.V. Porsev, A.V. Kovalenko, J. Comput. Chem. 38, 2581 (2017)Google Scholar
  166. 166.
    R.A. Evarestov, Quantum Chemistry of Solids: LCAO Treatment of Crystals and Nanostructures, 2nd edn. Springer Series in Solid State Sciences, vol. 153 (Springer, Berlin, 2012)Google Scholar
  167. 167.
    R.A. Evarestov, YuF Zhukovskii, A.V. Bandura, S. Piskunov, J. Phys. Chem. C 114, 21061 (2010)Google Scholar
  168. 168.
    R.A. Evarestov, A.V. Bandura, M.V. Losev, S. Piskunov, YuF Zhukovskii, Physica E 43, 266 (2010)Google Scholar
  169. 169.
    A.V. Bandura, R.A. Evarestov, Surf. Sci. 603, L117 (2009)Google Scholar
  170. 170.
    A.V. Bandura, R.A. Evarestov, Comput. Mater. Sci. 65, 395 (2012)Google Scholar
  171. 171.
    M. Damnjanović, T.V.E. Dobradzić, I. Milosěvić, T. Vuković, B. Nikolić, New J. Phys. 5, 148 (2003)Google Scholar
  172. 172.
    R.A. Evarestov, YuF Zhukovskii, A.V. Bandura, S. Piskunov, M.V. Losev, J. Phys. Chem. C 115, 14067 (2011)Google Scholar
  173. 173.
    R.A. Evarestov, A.V. Bandura, Nanodevices and Nanomaterials for Ecological Security. NATO Science for Peace and Security; Series B: Physics and Biophysics (Springer, Dordrecht, 2012), pp. 75–85Google Scholar
  174. 174.
    A.V. Bandura, V.V. Porsev, R.A. Evarestov, J. Comput. Chem. 37, 641 (2016)Google Scholar
  175. 175.
    R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. D’Arco, M. Llunell, M. Causa, Y. Noel, CRYSTAL14 User’s Manual (University of Torino, Torino, 2014)Google Scholar
  176. 176.
    P. Raybaud, G. Kresse, J. Hafner, H. Toulhoat, J. Phys. Condens. Matter 9, 11085 (1997)Google Scholar
  177. 177.
    H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, C. N. R. Rao, Angew. Chem. 122, 4153 (2010)Google Scholar
  178. 178.
    Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Physica B 406, 2254 (2011)Google Scholar
  179. 179.
    K.K. Kam, B.A. Parkinson, J. Phys. Chem. 86, 463 (1982)Google Scholar
  180. 180.
    C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)Google Scholar
  181. 181.
    X. Gu, R. Yang, Appl. Phys. Lett. 105, 131903 (2014)Google Scholar
  182. 182.
    J. Ma, W. Li, X. Luo, Appl. Phys. Lett. 108, 082102 (2016)Google Scholar
  183. 183.
    M. Virsek, A. Jesih, I. Milosěvić, M. Damnjanović, M. Remskar, Surf. Sci. 601, 2868 (2007)Google Scholar
  184. 184.
    P.M. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashiri, R. Tenne, Phys. Rev. B 72, 205436 (2005)Google Scholar
  185. 185.
    K.R. O’Neal, J.G. Cherian, A. Zak, R. Tenne, Z. Liu, J.L. Musfeldt, Nano Lett. 16, 993 (2016)Google Scholar
  186. 186.
  187. 187.
    J.-W. Jiang, Nanoscale 6, 8326 (2014)Google Scholar
  188. 188.
    D.C. Wallace, Thermodynamics of Crystals (Dover, New York, NY, 1998)Google Scholar
  189. 189.
    J. Hone, in Carbon Nanotubes, ed. by M.S. Dresselhaus, G. Dresselhaus, Ph Avouris (Springer, Berlin, 2001), pp. 273–286Google Scholar
  190. 190.
    R.A. Evarestov, A.V. Kovalenrj, A.V. Bandura, A.V. Domnin, S.I. Lukyanov, Mater. Res. Express 5, 115028 (2018)Google Scholar
  191. 191.
    A. Molina-Sáncheza, Wirtza L HummerKand. Surf. Sci. Rep. 70, 554 (2015)Google Scholar
  192. 192.
    Tonti D, F. Varsano, F. Decker, C. Ballif, M. Regula, M.Remskar, J. Phys. Chem. B 101, 2485 (1997)Google Scholar
  193. 193.
    C. Sourisseau, F. Cruege, M. Fouassier, Chem. Phys. 150, 281 (1991)Google Scholar
  194. 194.
    Sandoval S. Jimenez, D. Yang, R.F. Frindt, J.C., Irwin, 1991 Phys. Rev. B 44, 3955 (1991)Google Scholar
  195. 195.
    X. Zhang, F. QiaoX, W. Shi,n J. B. Wu, D.S.Jiang, P.H.Tan, Chem. Soc. Rev. 44, 2757 (2015)Google Scholar
  196. 196.
    Y.F. Zhukovskii, S. Piskunov, O. Lisovski, D. Bocharov, R.A. Evarestov, Israel J. Chem. 57, 461 (2017)Google Scholar
  197. 197.
    R.M. Navarro, M.C. Alvarez-Galvan, J.A. Villoria de la Mano, S.M. Al-Zahrani, J.L.G. Fierro, Energy Environ. Sci. 3, 1865 (2010)Google Scholar
  198. 198.
    A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)Google Scholar
  199. 199.
    S.B.A. Hamid, S.J. Teh, C.W. Lai, Catalysts 7, 93 (2017)Google Scholar
  200. 200.
    Z. Li, X. Meng, Z. Zhang, J. Photochem. Photobiol. C: Photochem. Rev. 35, 39 (2018)Google Scholar
  201. 201.
    Y. Yang, F. Huilong, R. Gedeng, L. Yilun, J.M. Tour, Adv. Funct. Mater. 25, 6199 (2015)Google Scholar
  202. 202.
    R. Dong, I. Kuljanishvili, J. Vacuum Sci. Technol. B 35, 030803 (2017)Google Scholar
  203. 203.
    K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro, Science 353, aac9439 (2016)Google Scholar
  204. 204.
    C. Lan, C. Li, Y. Yin, Y. Liu, Nanoscale 7, 5974 (2015)Google Scholar
  205. 205.
    H.L. Zhuang, R.G. Hennig, J. Phys. Chem. C 117, 20440 (2013)Google Scholar
  206. 206.
    W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.H. Tan, G. Eda, ACS Nano 7, 791 (2013)Google Scholar
  207. 207.
    F. Haque, T. Daeneke, K. Kalantar-zadeh, J.Z. Ou, Nano-Micro Lett. 10, 1 (2018)Google Scholar
  208. 208.
    Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, Adv. Mater. 27, 363 (2014)Google Scholar
  209. 209.
    J. Park, W. Lee, T. Choi, S.H. Hwang, J.M. Myoung, J.H. Jung, S.H. Kim, H. Kim, Nanoscale 7, 1308 (2015)Google Scholar
  210. 210.
    Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui, Z. Liu, ACS Nano 7, 8963 (2013)Google Scholar
  211. 211.
    B. Polyakov, A. Kuzmin, K. Smits, J. Zideluns, E. Butanovs, J. Butikova, S. Vlassov, S. Piskunov, Y.F. Zhukovskii, J. Phys. Chem. C 120, 21451 (2016)Google Scholar
  212. 212.
    S. Piskunov, O. Lisovski, Y.F. Zhukovskii, P.N. D’yachkov, R.A. Evarestov, S. Kenmoe, E. Spohr, ACS Omega 4, 1434 (2019)Google Scholar
  213. 213.
    D. Bocharov, S. Piskunov, Y.F. Zhukovskii, R.A. Evarestov, Phys. Status Solidi RRL 13, 1800253 (2019)Google Scholar
  214. 214.
    Y.F. Zhukovskii, S. Piskunov, R.A. Evarestov, IOP Conf. Ser.: Mater. Sci. Eng. 503, 012002 (2019)Google Scholar
  215. 215.
    P.N. D’yachkov, Int. J. Q. Chem. 116, 174 (2016)Google Scholar
  216. 216.
    V.V. Porsev, A.V. Bandura, R.A. Evarestov, ChemPhysChem 16, 3007 (2015)Google Scholar
  217. 217.
    A.V. Bandura, S.I. Lukyanov, R.A. Evarestov, D.D. Kuruch, Phys. Solid State 60, 2551 (2018)Google Scholar
  218. 218.
    A.V. Bandura, S.I. Lukyanov, R.A. Evarestov, Rus. J. General Chem. 88, 2695 (2018)Google Scholar
  219. 219.
    A.V. Bandura, S.I. Lukyanov, R.A. Evarestov, J. Mol. Graph. Modell. 85, 212 (2018)Google Scholar
  220. 220.
    J.-W. Jiang, Nanotechnology 26, 315706 (2015)Google Scholar
  221. 221.
    N. Wakabayashi, H.G. Smith, R.M. Nicklow, Phys. Rev. B 12, 659 (1975)Google Scholar
  222. 222.
    F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)Google Scholar
  223. 223.
    J.-W. Jiang, H.S. Park, T. Rabczuk, J. Appl. Phys. 114, 064307 (2013)Google Scholar
  224. 224.
    T. Liang, S.R. Phillpot, S.B. Sinnott, Phys. Rev. B 79, 245110 (2009)Google Scholar
  225. 225.
    J.D. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003)Google Scholar
  226. 226.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon, New York, 1986)Google Scholar
  227. 227.
    S.I. Lukyanov, A.V. Bandura, R.A. Evarestov, 57, 2464 (2015)Google Scholar
  228. 228.
    A.V. Bandura, R.A. Evarestov, S.I. Lukyanov, S. Piskunov, Y.F. Zhukovskii, Mater. Res. Express 4, 085014 (2017)Google Scholar
  229. 229.
    J.L. Feldman, Phys. Chem. Solids 37, 1141 (1976)Google Scholar
  230. 230.
    C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, K.S. Novoselov, Phys. Rev. B 87, 081307(R) (2013)Google Scholar
  231. 231.
    B. Schonfeld, J.J. Huang, S.C. Moss, Acta Crystallogr. B 39, 404 (1983)Google Scholar
  232. 232.
    Z.-H. Chi, X.-M. Zhao, H. Zhang, A.F. Goncharov, S.S. Lobanov, T. Kagayama, M. Sakata, X.-J. Chen, Phys. Rev. Lett. 113, 036802 (2014)Google Scholar
  233. 233.
    D.B. Putungan, J.-L. Kuo, Integr. Ferroelectr. Int. J. 156, 93 (2014)Google Scholar
  234. 234.
    R. Mitchell, Y. Fujiki, Y. Ishizawa, J. Cryst. Growth 57, 273 (1982)Google Scholar
  235. 235.
    B. Pałosz, E. Salje, J. Appl. Crystallogr. 22, 622 (1989)Google Scholar
  236. 236.
    B. Pałosz, W. Steurer, H. Schulz, Acta Crystallogr. B 46, 449 (1990)Google Scholar
  237. 237.
    J. Yamaki, A. Yamaji, Phys. B + C 105, 466 (1981)Google Scholar
  238. 238.
    K.T.R. Reddy, G. Sreedevi, R.W. Miles, J. Mater. Sci. Eng. A 3, 182 (2013)Google Scholar
  239. 239.
    Y. Sun, H. Cheng, Sh. Gao, Zh. Sun, Q. Liu, Qin Liu, F. Lei, T. Yao, J. He, Sh.Wei, Y. Xie, Angew. Chem. Int. Ed. 51, 8727 (2012)Google Scholar
  240. 240.
    H.L. Zhuang, R.G. Hennig, Phys. Rev. B 88, 115314 (2013)Google Scholar
  241. 241.
    H. Zhong, G. Yang, H. Song, Q. Liao, H. Cui, P. Shen, C.-X. Wang, J. Phys. Chem. C 116, 9319 (2012)Google Scholar
  242. 242.
    A. Yella, E. Mugnaioli, M. Panthöfer, H.A. Therese, U. Kolb, W. Tremel, Angew. Chem. Int. Ed. 48, 6426 (2009)Google Scholar
  243. 243.
    Y.-T. Lin, J.-B. Shi, Y-Ch. Chen, Ch-J Chen, P.-F. Wu, Nanoscale Res. Lett. 4, 694 (2009)Google Scholar
  244. 244.
    G. Radovsky, R. Popovitz-Biro, M. Staiger, K. Gartsman, C. Thomsen, T. Lorenz, G. Seifert, R. Tenne, Angew. Chem. Int. Ed. 50, 12316 (2011)Google Scholar
  245. 245.
    A.V. Bandura, R.A. Evarestov, Surf. Sci. 641, 6 (2015)Google Scholar
  246. 246.
    A. Yella, E. Mugnaioli, H.A. Therese, M. Panthöfer, U. Kolb, W. Tremel, Chem. Mater. 21, 2474 (2009)Google Scholar
  247. 247.
    H. Chang, E. In, K. Kong, J.-O. Lee, Y. Choi, B.-H. Ryu, J. Phys. Chem. B Lett. 109, 30 (2005)Google Scholar
  248. 248.
    Y. Huang, C. Ling, H. Liu, S. Wang, B. Geng, J. Phys. Chem. C 118, 9251 (2014)Google Scholar
  249. 249.
    C. Ling, Y. Huang, H. Liu, S. Wang, Z. Fang, L. Ning, J. Phys. Chem. C 118, 28291 (2014)Google Scholar
  250. 250.
    L.F. Pacios, P.A. Christiansen, J. Chem. Phys. 82, 2664 (1985)Google Scholar
  251. 251.
    M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross, W.C. Ermler, J. Chem. Phys. 84, 6840 (1986)Google Scholar
  252. 252.
    L.A. LaJohn, P.A. Christiansen, R.B. Ross, T. Atashroo, W.C. Ermler, J. Chem. Phys. 87, 2812 (1987)Google Scholar
  253. 253.
    K. Knorr, L. Ehm, M. Hytha, B. Winkler, W. Depmeier, Phys. Status Solidi B 223, 435 (2001)Google Scholar
  254. 254.
    X. He, H. Shen, Phys. B 407, 1146 (2012)Google Scholar
  255. 255.
    L.A. Burton, A. Walsh, J. Phys. Chem. C 116, 24262 (2012)Google Scholar
  256. 256.
    Y. Seminovski, P. Palacios, P. Wahnón, Thin Solid Films 535, 387 (2013)Google Scholar
  257. 257.
    T. Shibata, N. Kambe, Y. Muranushi, T. Miura, T. Kishi, J. Phys. D. Appl. Phys. 23, 719 (1990)Google Scholar
  258. 258.
    T. Lorenz, J.-O. Joswig, G. Seifert, Semicond. Sci. Technol. 29, 064006 (2014)Google Scholar
  259. 259.
    A.V. Bandura, R.A. Evarestov, S.I. Lukyanov, Phys. Chem. Chem. Phys. 16, 14781 (2014)Google Scholar
  260. 260.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)Google Scholar
  261. 261.
    S. Chen, L.W. Wang, Chem. Mater. 24, 3659 (2012)Google Scholar
  262. 262.
    A.V. Bandura, R.A. Evarestov, J. Comput. Chem. 35, 395 (2014)Google Scholar
  263. 263.
    A.V. Bandura, D.D. Kuruch, R.A. Evarestov, Comput. Mater. Sci. 96, 124 (2015)Google Scholar
  264. 264.
    S. Dimovski, Y. Gogotsi, in: Y. Gogotsi (Ed.), Nanotubes and Nanofibers, Taylor and Francis Group, Boca Raton 2008, p. 109Google Scholar
  265. 265.
    M. Fernee, A. Watt, J. Warner, S. Cooper, N. Heckenberg, H. Rubinsztein-Dunlop, Nanotechnology 14, 991 (2003)Google Scholar
  266. 266.
    N. Benkhettou, D. Rached, B. Soudini, M. Driz, Phys. Status Solidi B 241, 101 (2004)Google Scholar
  267. 267.
    N. Benkhettou, O. Rached, B. Soudini, M. Driz, Phys. Status Solidi B 241, 101 (2004)Google Scholar
  268. 268.
    C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, J. Appl. Phys. 79, 9105 (1996)Google Scholar
  269. 269.
    Y. Sun et al., Nat. Commun. 3, 1057 (2012)Google Scholar
  270. 270.
    C.J. Tong, H. Zhang, Y.N. Zhang, H. Liu, L.M. Liu, J. Mater. Chem. A 2, 17971 (2014)Google Scholar
  271. 271.
    L. Li, P. Li, N. Lu, J. Dai, X.C. Zeng, Adv. Sci. 2, 1500290 (2015)Google Scholar
  272. 272.
    J. Zhou, B.G. Sumpter, P.R.C. Kent, J. Huang, ACS Appl. Mater. Interfaces 7, 1458 (2015)Google Scholar
  273. 273.
    H. Zhang, X. Ma, J. Xu, D. Yang, J. Cryst. Growth 263, 372 (2004)Google Scholar
  274. 274.
    S.M. Zhou, Y.S. Feng, L.D. Zhang, Eur. J. Inorg. Chem. 9, 1794 (2003)Google Scholar
  275. 275.
    T. Ling, M. Wu, X. Du, Semicond. Sci. Technol. 27, 055017 (2012)Google Scholar
  276. 276.
    S. Hamad, S M. Woodley, C.R.A. Catlow, Mol. Simul. 35, 1015 (2009)Google Scholar
  277. 277.
    X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wua, Y. Bando, D. Golberg, Prog. Mater. Sci. 56 175, (2011)Google Scholar
  278. 278.
    Q.H. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zengel, H.R. Gutierrez, J.M. Redwing, L.C. Lew Yan Voon, B. Lassen, P.C. Eklund, Nano Lett. 4, 1663 (2004)Google Scholar
  279. 279.
    L.W. Yin, Y. Bando, J.H. Zhan, M.S. Li, D. Golberg, Adv. Mater. 17, 1972 (2005)Google Scholar
  280. 280.
    C. Tang, J. Experim. Nanosci. 9, 161 (2014)Google Scholar
  281. 281.
    S. Pal, B. Goswami, P. Sarkar, J. Phys. Chem. C 111, 1556 (2007)Google Scholar
  282. 282.
    X. Zhang, M. Zhao, T. He, W. Li, X. Lin, Z. Wang, Z. Xi, X. Liu, Y. Xia, Solid State Commun. 147, 165 (2008)Google Scholar
  283. 283.
    J.-M. Xie, J. At. Mol. Sci. 4, 375–82 (2013)Google Scholar
  284. 284.
    Y. Huang, Z. Zhang, F. Ma, P.K. Chu, C. Dong, X. Wei, Comput. Mater. Sci. 101, 1 (2015)Google Scholar
  285. 285.
    L. Li, M. Zhao, X. Zhang, Z. Zhu, F. Li, J. Li, C. Song, X. Liu, Y. Xia, J. Phys. Chem. C 112, 3509 (2008)Google Scholar
  286. 286.
    A.V. Bandura, R.A. Evarestov, Surf. Sci. 641, 6 (2015)Google Scholar
  287. 287.
    F. Bechstedt, W.A. Harrison, Phys. Rev. B 39, 5041 (1989)Google Scholar
  288. 288.
    X. Zhang, M. Zhao, S. Yan, T. He, W. Li, X. Lin, Z. Xi, Z. Wang, X. Liu, Y. Xia, Nanotechnology 19, 305708 (2008)Google Scholar
  289. 289.
    M.M. Husain, Phys. E 41, 1329 (2009)Google Scholar
  290. 290.
    M. Das, P. Mukherjee, S. Chowdhury, B.C. Gupta, Phys. Status Solidi B 254, 1700038 (2017)Google Scholar
  291. 291.
    M. Das, B.C. Gupta, J. Appl. Phys. 115, 214307 (2014)Google Scholar
  292. 292.
    A.V. Bandura, D.D. Kuruch, R.A. Evarestov, Mater. Res. Express 5, 055036 (2018)Google Scholar
  293. 293.
    L. Ju, Y. Dai, W. Wei, M. Li, Y. Liang, B. Huang, Phys. Chem. Chem. Phys. 20, 1904 (2018)Google Scholar
  294. 294.
    T. Bredow, P. Heitjans, M. Wilkening, Phys. Rev. B 70, 115111 (2004)Google Scholar
  295. 295.
    M.J.S. Spencer, Prog. Mater. Sci. 57, 437 (2012)Google Scholar
  296. 296.
    A. Mandal, S. Banerjee, S. Dhara, D. Chakravorty, AIP Conf. Proc. 1447, 231 (2012)Google Scholar
  297. 297.
    O. Madelung, M. Scholz, H. Weiss, Numerical Data and Functional Relationships in Science and Technology 17, Landolt-Bornstein (Springer, Berlin, 1982)Google Scholar
  298. 298.
    F. Bechstedt, W.A. Harrison, Phys. Rev. B 39, 5041 (1989)ADSCrossRefGoogle Scholar
  299. 299.
    L. Ley, R.A. Pollak, F.R. McFeely, S.P. Kowalczyk, D.A. Shirley, Phys. Rev. B 9, 600 (1974)ADSCrossRefGoogle Scholar
  300. 300.
    H. Pan, Y.P. Feng, ACS Nano 2, 2410 (2000)CrossRefGoogle Scholar
  301. 301.
    D.B. Migas, A.B. Filonov, V.E. Borisenko, N.V. Skorodumova, Phys. Chem. Chem. Phys. 16, 9490 (2014)CrossRefGoogle Scholar
  302. 302.
    H. Chen, D. Shi, J. Qi, J. Jia, B. Wang, Phys. Lett. A 373, 371 (2009)ADSCrossRefGoogle Scholar
  303. 303.
    M.A.M. Seyam, Vacuum 63, 441 (2001)ADSCrossRefGoogle Scholar
  304. 304.
    A. Aruchamy (ed.), Photoelectrochemistry and Photovoltaics of Layered Semiconductors (Kluwer Academic Publishers, Dordrecht, 1992)Google Scholar
  305. 305.
    J. Martinez-Pastor, A. Segura, J.L. Valdes, A. Chevy, J. Appl. Phys. 626, 1477 (1987)ADSCrossRefGoogle Scholar
  306. 306.
    M. Gratzel, Nature 414, 338 (2001)ADSCrossRefGoogle Scholar
  307. 307.
    P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, K. Xiao, Nano Lett. 13, 1649 (2013)ADSCrossRefGoogle Scholar
  308. 308.
    P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, ACS Nano 6, 5988 (2012)CrossRefGoogle Scholar
  309. 309.
    D.J. Late, B. Liu, H.S.S.R. Matte, C.N.R. Rao, V.P. Dravid, Adv. Funct. Mater. 22, 1894 (2012)CrossRefGoogle Scholar
  310. 310.
    P. Kushwaha, A. Patra, E. Anjali, H. Surdi, A. Singh, C. Gurada, S. Ramakrishnan, S.S. Prabhu, A.V. Gopal, A. Thamizhavel, Opt. Mater. 36, 616 (2014)ADSCrossRefGoogle Scholar
  311. 311.
    F.E. Faradzhev, N.M. Gasanly, A.S. Ragimov, A.F. Goncharov, S.I. Subbotin, Solid State Commun. 39, 587 (1981)ADSCrossRefGoogle Scholar
  312. 312.
    K. Takarabe, H. Kawamura, K. Wakamura, Phys. Status Solidi B 142, 605 (1987)ADSCrossRefGoogle Scholar
  313. 313.
    K. Takarabe, K. Wakamura, T. Ogawa, J. Phys. Soc. Jpn. 52, 686 (1983)ADSCrossRefGoogle Scholar
  314. 314.
    S.W. Haggata, M.A. Malik, M. Motevalli, P. OQBrien, J.C. Knowles, Chem. Mater. 7, 716 (1995)Google Scholar
  315. 315.
    R. Kumaresan, M. Ichimura, N. Sato, P. Ramasamy, Mater. Sci. Eng. B 96, 37 (2002)CrossRefGoogle Scholar
  316. 316.
    N. Revaprasadu, M.A. Malik, J. Carstensa, P. O’Brien, J. Mater. Chem. 9, 2885 (1999)CrossRefGoogle Scholar
  317. 317.
    D.P. Dutta, G. Sharma, A.K. Tyagi, S.K. Kulshreshtha, Mater. Sci. Eng. B 138, 60 (2007)CrossRefGoogle Scholar
  318. 318.
    J.A. Hollingsworth, D.M. Poojary, A. Clearfield, W.E. Buhro, J. Am. Chem. Soc. 122, 3562 (2000)CrossRefGoogle Scholar
  319. 319.
    M. Côté, M.L. Cohen, D.J. Chadi, Phys. Rev. B 588, R4277 (1998)ADSCrossRefGoogle Scholar
  320. 320.
    Th. Köhler, Th. Frauenheim, Z. Hajnal, G. Seifert, Phys. Rev. B 69, 193403 (2004)Google Scholar
  321. 321.
    H.G. Si, Y.X. Wang, Y.L. Yan, G.B. Zhang, J. Phys. Chem. C 116, 3956 (2012)CrossRefGoogle Scholar
  322. 322.
    Andrei V. Bandura, Dmitry D. Kuruch, Robert A. Evarestov, Isr. J. Chem. 57, 490 (2017)CrossRefGoogle Scholar
  323. 323.
    A.V. Bandura, R.A. Evarestov, J. Comput. Chem. 35, 395 (2014)CrossRefGoogle Scholar
  324. 324.
    A.V. Bandura, R.A. Evarestov, Surf. Sci. 641, 6 (2015)ADSCrossRefGoogle Scholar
  325. 325.
    J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)ADSCrossRefGoogle Scholar
  326. 326.
    M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)ADSCrossRefGoogle Scholar
  327. 327.
    R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich- Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, P. DQArco, M. Llunell, M. Causa, Y. Noel, CRYSTAL14 User’s Manual, University of Turin, Turin (2014)Google Scholar
  328. 328.
    T. Bredow, P. Heitjans, M. Wilkening, Phys. Rev. B 70, 115111 (2004)ADSCrossRefGoogle Scholar
  329. 329.
    N.M. Gasanly, H. Ozkan, A. Aydinli, I. Yilmaz, Solid State Commun. 110, 231 (1999)ADSCrossRefGoogle Scholar
  330. 330.
    Database, Thermal Constants of Substances (in Russian), http://www.chem.msu.su/cgi-bin/tkv.plshow=welcome.html. Accessed 16 Dec 2019
  331. 331.
    R.W.G. Wyckoff, Crystal Structures, vol. 1, 2nd edn. (Interscience Publishers, New York, 1963)zbMATHGoogle Scholar
  332. 332.
    H.L. Zhuang, R. Hennig, Chem. Mater. 2013(25), 3232 (2013)Google Scholar
  333. 333.
    M. Damnjanović, B. Nicolić, I. Milošević, Phys. Rev. B 75, 033403 (2007)Google Scholar
  334. 334.
    M. Damnjanović, E. Dobardžić, I. Milošević, T. Vuković, B. Nicolić, New J. Phys. 5, 148 (2003)Google Scholar
  335. 335.
    K. Tibbetts, R. Doe, G. Ceder, Phys. Rev. B 80, 014102 (2009)ADSCrossRefGoogle Scholar
  336. 336.
    C.R.A. Catlow, Z.X. Guo, M. Miskufova, S.A. Shevlin, A.G.H. Smith, A.A. Sokol, A. Walsh, D.J. Wilson, S.M. Woodley, Philos. Trans. R. Soc. A 368, 3379 (2010)ADSCrossRefGoogle Scholar
  337. 337.
    S. Chen, L.W. Wang, Chem. Mater. 24, 3659 (2012)CrossRefGoogle Scholar
  338. 338.
    A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009)CrossRefGoogle Scholar
  339. 339.
    R.A. Evarestov, A.V. Kovalenko, A.V. Bandura, Phys. E: Low Dimens. Syst. Nanostruct. 115, 113681 (2020)CrossRefGoogle Scholar
  340. 340.
    M. Nath, C.N.R. Rao, Chem. Commun. 2236, (2001)Google Scholar
  341. 341.
    Y.C. Cheng, Z.Y. Zhu, M. Tahir, U. Schwingenschlögl, Europhys. Lett. 102, 57001 (2013)Google Scholar
  342. 342.
    A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.- Y. Chou, X. Zhang, L.-J. Li, Nat. Nanotechnol. 12, 744 (2017)Google Scholar
  343. 343.
    A. Kandemir, H. Sahin, Phys. Chem. Chem. Phys. 20, 17380 (2018)CrossRefGoogle Scholar
  344. 344.
    H.H. Wu, Q. Meng, H. Huang, C.T. Liu, X.L. Wang, Phys. Chem. Chem. Phys. 20, 3608 (2018)CrossRefGoogle Scholar
  345. 345.
    Y.F. Luo, Y. Pang, M. Tang, Q. Song, M. Wang, Comput. Mater. Sci. 156, 315 (2019)CrossRefGoogle Scholar
  346. 346.
    Z.-K. Tang, B. Wen, M. Chen, L.-M. Liu, Adv. Theory Simul. 1, 1800082 (2018)CrossRefGoogle Scholar
  347. 347.
    R.A. Evarestov, A.V. Kovalenko, A.V. Bandura, A.V. Domnin, S.I. Lukyanov, Mater. Res. Express 5, 115028 (2018)ADSCrossRefGoogle Scholar
  348. 348.
    Y. Ji, M. Yang, H. Lin, T. Hou, L. Wang, Y. Li, S-T. Lee, J. Phys. Chem. 122, 3123 (2018)Google Scholar
  349. 349.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)ADSCrossRefGoogle Scholar
  350. 350.
    L. Guimaraes, A.N. Enyashin, G. Seifert, H.A. Duarte, J. Phys. Chem. C 114, 11358 (2010)CrossRefGoogle Scholar
  351. 351.
    L. Guimarães, A.N. Enyashin, J. Frenzel, T. Heine, H.A. Duarte, G. Seifert, ACS Nano 1, 362 (2007)CrossRefGoogle Scholar
  352. 352.
    A. Enyashin, G. Seifert, K.D. Sattler (eds.), Handbook of Nanophysics, Volume IV: Nanotubes and Nanowires (CRC Press, Boca Raton, 2010), 201012–1–12–22Google Scholar
  353. 353.
    B.L. Gao, S.H. Ke, G. Song, J. Zhang, L. Zhou, G.N. Li, F. Liang, Y. Wang, C. Dang, Structural and electronic properties of zigzag and armchair WSe\(_2\) nanotubes. J. Alloy. Compd. 695, 2751 (2017)Google Scholar
  354. 354.
    B.M. Wong, S.H. Ye, Phys. Rev. B. 84, 075115 (2011)ADSCrossRefGoogle Scholar
  355. 355.
    M. Staiger, P. Rafailov, K. Gartsman, H. Telg, M. Krause, G. Radovsky, A. Zak, C. Thomsen, Phys. Rev. B. 86, 165 (2012)CrossRefGoogle Scholar
  356. 356.
    G. Seifert, On the electronic structure of non carbon nanotubes, in AIP Conference Proceedings AIP (2000), p. 415Google Scholar
  357. 357.
    A. Enyashin, G. Seifert, Inorganic fullerenes and nanotubes, in Nanophysics 4: Nanotubes and Nanowires, ed. by K.D. Sattler (CRC Press, Boca Raton, 2011), pp. 12–1Google Scholar
  358. 358.
    G.G. Tibbetts, J. Cryst. Growth 66, 632 (1984)ADSCrossRefGoogle Scholar
  359. 359.
    S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1987)zbMATHGoogle Scholar
  360. 360.
    Y. Huang, J. Wu, K.C. Hwang, Phys. Rev. B 74, 245413 (2006)ADSCrossRefGoogle Scholar
  361. 361.
    Q. Lu, M. Arroyo, R. Huang, J. Phys. D. Appl. Phys. 42, 102002 (2009)ADSCrossRefGoogle Scholar
  362. 362.
    A.V. Bandura, D.D. Kuruch, R.A. Evarestov, Comput. Mater. Sci. 96, 124 (2015)CrossRefGoogle Scholar
  363. 363.
    E. Scalise, M. Houssa, G. Pourtois, V. Afanasyev, A. Stesmans, Nano Res. 5, 43 (2012)CrossRefGoogle Scholar
  364. 364.
    J. Zhou, Adv. Theory Simul. 1900061 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Chemistry DepartmentSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations