Epigenetic and Gene Modification Precision Medicine Approaches for the “Chronic Destructive Perio-Diseases”: Periodontitis and Peri-implantitis

  • Denis F. Kinane


The mainstay of periodontal and peri-implantitis treatment is the mechanical and chemical eradication of the plaque biofilm both professional and as a preventive home care regime. Precision medicine approaches are highly applicable to these common chronic inflammatory diseases that feature a strong genetic and individual susceptibility profile that has the possibility to be modified. In order to improve periodontal health and create resistance to new disease, individual susceptibility elements need to be identified and genetically and molecularly modified. This review seeks to take our thinking further and utilize current accepted paradigms regarding the etiology of the disease, the contributing host factors and using precision medicine-like approaches using our vast laboratory and animal-based knowledge of systems biology, molecular, and –omics knowledge, to fashion new approaches. One approach is the reduction in inflammation by utilizing CRISPR to replace genetic haplotypes responsible for defective IL-8 response. Another approach considered is modifying the epigenome, specifically reducing the methylation of TLR2 related DNA to improve the receptor function in the innate immune response to the biofilm. And lastly we will review CRISPR modification of NOD receptor genes to improve PMN-related netosis to improve host response to the biofilm. Currently, gene modification, deletion, and replacement therapies, predominantly through CRISPR, are starting to become FDA-approved and may develop relevance for oral diseases. Thus, we will review these examples of precision medicine approaches to reducing periodontal susceptibility that might prove in future to have therapeutic utility or provide inspiration to develop other approaches to exploit the enormous body of molecular and genetic knowledge on the etiology of the disease to address this common and debilitating disease.


CRISPR Epigenetics NOD receptors Periodontitis Peri-implantitis Gene modification Netosis IL-8 Haplotypes 



Dr. Manjunathata Benakanakere collaborated on all of the work presented in this review and I am grateful to him for his inspirational intellect and support.


  1. 1.
    Benakanakere M, Kinane DF. Innate cellular responses to the periodontal biofilm. Front Oral Biol. 2012;15:41–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Benakanakere MR, Finoti LS, Tanaka U, Grant GR, Scarel-Caminaga RM, Kinane DF. Investigation of the functional role of human Interleukin-8 gene haplotypes by CRISPR/Cas9 mediated genome editing. Sci Rep. 2016;6:31180.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hajishengallis E, Hajishengallis G. Neutrophil homeostasis and periodontal health in children and adults. J Dent Res. 2014;93(3):231–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198(5):773–83.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Vitkov L, Klappacher M, Hannig M, Krautgartner WD. Extracellular neutrophil traps in periodontitis. J Periodontal Res. 2009;44(5):664–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Guggenheim B, Gmur R, Galicia JC, Stathopoulou PG, Benakanakere MR, Meier A, Thurnheer T, Kinane DF. In vitro modeling of host-parasite interactions: the ‘subgingival’ biofilm challenge of primary human epithelial cells. BMC Microbiol. 2009;9:280.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Diaz PI, Zilm PS, Rogers AH. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology. 2002;148(Pt 2):467–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Kurgan S, Kansal S, Nguyen D, Stephens D, Koroneos Y, Hasturk H, Van Dyke TE, Kantarci A. Strain-specific impact of fusobacterium nucleatum on neutrophil function. J Periodontol. 2017;88(4):380–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Mendes RT, Nguyen D, Stephens D, Pamuk F, Fernandes D, Van Dyke TE, Kantarci A. Endothelial cell response to fusobacterium nucleatum. Infect Immun. 2016;84(7):2141–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PLoS One. 2013;8(8):e71227.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol. 2006;42:47–79.CrossRefGoogle Scholar
  14. 14.
    Zijinge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmur R, Harmsen HJ. Oral biofilm architecture on natural teeth. PLoS One. 2010;5(2):e9321.CrossRefGoogle Scholar
  15. 15.
    Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296(5566):298–300.PubMedCrossRefGoogle Scholar
  16. 16.
    Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol. 2003;4(7):702–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol. 2006;7(12):1250–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA, Collins C, Viala J, Ferrero RL, Girardin SE, Philpott DJ. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity. 2007;26(4):445–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, Wang Y. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853–62.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rodriguez SB, Stitt BL, Ash DE. Expression of peptidylarginine deiminase from Porphyromonas gingivalis in Escherichia coli: enzyme purification and characterization. Arch Biochem Biophys. 2009;488(1):14–22.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Benakanakere MR, et al. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem. 2009;284:23107–15.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Benakanakere M, Abdolhosseini M, Hosur K, Finoti LS, Kinane DF. TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res. 2015;94:183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gilowska I. CXCL8 (interleukin 8)–the key inflammatory mediator in chronic obstructive pulmonary disease? Postepy Hig Med Dosw (Online). 2014;68:842–50.CrossRefGoogle Scholar
  25. 25.
    Martynowicz H, Janus A, Nowacki D, Mazur G. The role of chemokines in hypertension. Adv Clin Exp Med. 2014;23:319–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Gales D, Clark C, Manne U, Samuel T. The chemokine CXCL8 in carcinogenesis and drug response. ISRN Oncol. 2013;2013:859154.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol. 2003;284:L566–77.PubMedCrossRefGoogle Scholar
  28. 28.
    Konopka L, Pietrzak A, Brzezinska-Blaszczyk E. Effect of scaling and root planing on interleukin-1beta, interleukin-8 and MMP-8 levels in gingival crevicular fluid from chronic periodontitis patients. J Periodontal Res. 2012;47:681–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Kinane DF, Shiba H, Hart TC. The genetic basis of periodontitis. Periodontol. 2005;2000(39):91–117.CrossRefGoogle Scholar
  30. 30.
    Hull J, Thomson A, Kwiatkowski D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax. 2000;55:1023–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wacharasint P, Nakada TA, Boyd JH, Russell JA, Walley KR. AA genotype of IL-8 −251A/T is associated with low PaO(2)/FiO(2) in critically ill patients and with increased IL-8 expression. Respirology. 2012;17:1253–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Andia DC, et al. Interleukin-8 gene promoter polymorphism (rs4073) may contribute to chronic periodontitis. J Periodontol. 2011;82:893–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Kinane DF, Hart TC. Genes and gene polymorphisms associated with periodontal disease. Crit Rev Oral Biol Med. 2003;14:430–49.PubMedCrossRefGoogle Scholar
  34. 34.
    Shapira L, Wilensky A, Kinane DF. Effect of genetic variability on the inflammatory response to periodontal infection. J Clin Periodontol. 2005;32(Suppl 6):72–86.PubMedCrossRefGoogle Scholar
  35. 35.
    Kinane DF, et al. Experimental gingivitis, bacteremia and systemic biomarkers: a randomized clinical trial. J Periodontal Res. 2015;50:864. Scholar
  36. 36.
    Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol. 1993;64:456–60.PubMedGoogle Scholar
  37. 37.
    Frendeus B, et al. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med. 2000;192:881–90.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hajishengallis G, Sahingur SE. Novel inflammatory pathways in periodontitis. Adv Dent Res. 2014;26:23–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chen X, Huang J, Zhong L, Ding C. Quantitative assessment of the associations between interleukin-8 polymorphisms and periodontitis susceptibility. J Periodontol. 2015;86:292–300.PubMedCrossRefGoogle Scholar
  40. 40.
    Scarel-Caminaga RM, et al. Haplotypes in the interleukin 8 gene and their association with chronic periodontitis susceptibility. Biochem Genet. 2011;49:292–302.PubMedCrossRefGoogle Scholar
  41. 41.
    Finoti LS, et al. Association between IL8 haplotypes and pathogen levels in chronic periodontitis. Eur J Clin Microbiol Infect Dis. 2013b;32:1333–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Finoti LS, et al. Pathogen levels and clinical response to periodontal treatment in patients with Interleukin 8 haplotypes. Pathog Dis. 2013a;69(1):21–8. Scholar
  43. 43.
    Corbi SC, et al. Haplotypes of susceptibility to chronic periodontitis in the Interleukin 8 gene do not influence protein level in the gingival crevicular fluid. Arch Oral Biol. 2012;57:1355–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Kinane DF, et al. Gingival epithelial cells heterozygous for toll-like receptor 4 polymorphisms Asp299Gly and Thr399ile are hyporesponsive to Porphyromonas gingivalis. Genes Immun. 2006;7:190–200.PubMedCrossRefGoogle Scholar
  45. 45.
    Puthothu B, Krueger M, Heinze J, Forster J, Heinzmann A. Impact of IL8 and IL8-receptor alpha polymorphisms on the genetics of bronchial asthma and severe RSV infections. Clin Mol Allergy. 2006;4:2.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kim YJ, et al. Association of haplotypes in the IL8 gene with susceptibility to chronic periodontitis in a Brazilian population. Clin Chim Acta. 2010;411:1264–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Hacking D, et al. Increased in vivo transcription of an IL-8 haplotype associated with respiratory syncytial virus disease susceptibility. Genes Immun. 2004;5:274–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Ahn MH, et al. A promoter SNP rs4073T > A in the common allele of the interleukin 8 gene is associated with the development of idiopathic pulmonary fibrosis via the IL-8 protein enhancing mode. Respir Res. 2011;12:73.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Meade KG, O’Gorman GM, Narciandi F, Machugh DE, O’Farrelly C. Functional characterisation of bovine interleukin 8 promoter haplotypes in vitro. Mol Immunol. 2012;50:108–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Hartenian E, Doench JG. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J. 2015;282:1383–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Baltimore D, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348:36–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Roy A, et al. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing. Am J Physiol Renal Physiol. 2015;308:F366–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Denis F. Kinane
    • 1
  1. 1.Periodontology DepartmentUniversity of Bern, School of Dental MedicineBernSwitzerland

Personalised recommendations