The IL-17/Th17 Axis as a Therapeutic Target in Periodontitis

  • Nicolas DutzanEmail author
  • Loreto Abusleme
  • Niki Moutsopoulos


The Th17/IL-17 axis has been implicated in the pathogenesis of several inflammatory and autoimmune diseases including psoriasis, rheumatoid arthritis, and periodontitis. Indeed, in periodontitis, recent studies have further highlighted the role of the Th17/IL-17 axis in mediating immunopathology underscoring this pathway as a plausible therapeutic target for this disease. In this chapter, we focused not only on the role of IL-17A during immunopathology but also on its protective roles at mucosal barrier sites. We discussed the role of Th17 cells and IL-17A in oral mucosa homeostasis, their regulation and role in periodontal immunopathology. Finally, we reviewed the currently used agents for the management of Th17/IL-17 mediated diseases and commented on their possible use in the treatment of periodontitis.


Th17 IL-17 Periodontitis Immunopathology Inflammation Therapy Target Oral Mucosa Gingiva 



This work was partly funded by the Chilean government through FONDECYT # 11180389 (to N.D) and FONDECYT # 11180505 (to L.A).


  1. 1.
    Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014;93(11):1045–53.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20.PubMedGoogle Scholar
  3. 3.
    Bernabe E, Marcenes W. Periodontal disease and quality of life in British adults. J Clin Periodontol. 2010;37(11):968–72.PubMedGoogle Scholar
  4. 4.
    Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chapple IL. Time to take periodontitis seriously. BMJ. 2014;348:g2645.PubMedGoogle Scholar
  6. 6.
    Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017;44(5):456–62.Google Scholar
  7. 7.
    Heitz-Mayfield LJ, Lang NP. Surgical and nonsurgical periodontal therapy. Learned and unlearned concepts. Periodontol 2000. 2013;62(1):218–31.PubMedGoogle Scholar
  8. 8.
    Kornman KS. Contemporary approaches for identifying individual risk for periodontitis. Periodontol 2000. 2018;78(1):12–29.PubMedGoogle Scholar
  9. 9.
    Hirschfeld L, Wasserman B. A long-term survey of tooth loss in 600 treated periodontal patients. J Periodontol. 1978;49(5):225–37.PubMedGoogle Scholar
  10. 10.
    McFall WT Jr. Tooth loss in 100 treated patients with periodontal disease. A long-term study. J Periodontol. 1982;53(9):539–49.PubMedGoogle Scholar
  11. 11.
    Lindhe J, Nyman S. Long-term maintenance of patients treated for advanced periodontal disease. J Clin Periodontol. 1984;11(8):504–14.PubMedGoogle Scholar
  12. 12.
    Pretzl B, El Sayed S, Weber D, Eickholz P, Baumer A. Tooth loss in periodontally compromised patients: results 20 years after active periodontal therapy. J Clin Periodontol. 2018;45(11):1356–64.PubMedGoogle Scholar
  13. 13.
    Nabers CL, Stalker WH, Esparza D, Naylor B, Canales S. Tooth loss in 1535 treated periodontal patients. J Periodontol. 1988;59(5):297–300.PubMedGoogle Scholar
  14. 14.
    Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11.PubMedGoogle Scholar
  15. 15.
    Seymour GJ, Gemmell E, Reinhardt RA, Eastcott J, Taubman MA. Immunopathogenesis of chronic inflammatory periodontal disease: cellular and molecular mechanisms. J Periodontal Res. 1993;28(6 Pt 2):478–86.PubMedGoogle Scholar
  16. 16.
    Petit MD, Hovenkamp E, Hamann D, Roos MT, van der Velden U, Miedema F, et al. Phenotypical and functional analysis of T cells in periodontitis. J Periodontal Res. 2001;36(4):214–20.PubMedGoogle Scholar
  17. 17.
    Zappa U, Reinking-Zappa M, Graf H, Case D. Cell populations associated with active probing attachment loss. J Periodontol. 1992;63(9):748–52.PubMedGoogle Scholar
  18. 18.
    Seymour GJ, Cole KL, Powell RN. Analysis of lymphocyte populations extracted from chronically inflamed human periodontal tissues. II. Blastogenic response. J Periodontal Res. 1985;20(6):571–9.PubMedGoogle Scholar
  19. 19.
    Sinden PR, Walker DM. Inflammatory cells extracted from chronically inflamed gingiva. J Periodontal Res. 1979;14(6):467–74.PubMedGoogle Scholar
  20. 20.
    Silva N, Dutzan N, Hernandez M, Dezerega A, Rivera O, Aguillon JC, et al. Characterization of progressive periodontal lesions in chronic periodontitis patients: levels of chemokines, cytokines, matrix metalloproteinase-13, periodontal pathogens and inflammatory cells. J Clin Periodontol. 2008;35(3):206–14.PubMedGoogle Scholar
  21. 21.
    Baker PJ, Howe L, Garneau J, Roopenian DC. T cell knockout mice have diminished alveolar bone loss after oral infection with Porphyromonas gingivalis. FEMS Immunol Med Microbiol. 2002;34(1):45–50.PubMedGoogle Scholar
  22. 22.
    Baker PJ, Garneau J, Howe L, Roopenian DC. T-cell contributions to alveolar bone loss in response to oral infection with Porphyromonas gingivalis. Acta Odontol Scand. 2001;59(4):222–5.PubMedGoogle Scholar
  23. 23.
    Baker PJ, Dixon M, Evans RT, Dufour L, Johnson E, Roopenian DC. CD4(+) T cells and the proinflammatory cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect Immun. 1999;67(6):2804–9.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Dutzan N, Kajikawa T, Abusleme L, Greenwell-Wild T, Zuazo CE, Ikeuchi T, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med. 2018;10(463):eaat0797.Google Scholar
  25. 25.
    Tsukasaki M, Komatsu N, Nagashima K, Nitta T, Pluemsakunthai W, Shukunami C, et al. Host defense against oral microbiota by bone-damaging T cells. Nat Commun. 2018;9(1):701.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Monin L, Gaffen SL. Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb Perspect Biol. 2018;10(4):a028522.Google Scholar
  27. 27.
    Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465–73.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, et al. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity. 2017;46(1):133–47.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Vernal R, Dutzan N, Chaparro A, Puente J, Antonieta Valenzuela M, Gamonal J. Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis. J Clin Periodontol. 2005;32(4):383–9.PubMedGoogle Scholar
  30. 30.
    Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the Yin and the Yang. Trends Immunol. 2017;38(5):310–22.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol. 2017;18(6):612–21.PubMedGoogle Scholar
  32. 32.
    Song X, He X, Li X, Qian Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol. 2016;13(4):418–31.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206(2):299–311.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Conti HR, Baker O, Freeman AF, Jang WS, Holland SM, Li RA, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011;4(4):448–55.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Abusleme L, Moutsopoulos NM. IL-17: overview and role in oral immunity and microbiome. Oral Dis. 2017;23(7):854–65.PubMedGoogle Scholar
  36. 36.
    Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity. 2015;43(4):727–38.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Abusleme L, Diaz PI, Freeman AF, Greenwell-Wild T, Brenchley L, Desai JV, et al. Human defects in STAT3 promote oral mucosal fungal and bacterial dysbiosis. JCI Insight. 2018;3(17):122061.Google Scholar
  38. 38.
    Lionakis MS, Netea MG, Holland SM. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med. 2014;4(6):a019638.Google Scholar
  39. 39.
    Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J Immunol. 2012;188(12):6287–99.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Koenders MI, Kolls JK, Oppers-Walgreen B, van den Bersselaar L, Joosten LA, Schurr JR, et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 2005;52(10):3239–47.PubMedGoogle Scholar
  42. 42.
    Shalom-Barak T, Quach J, Lotz M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-kappaB. J Biol Chem. 1998;273(42):27467–73.PubMedGoogle Scholar
  43. 43.
    Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect. 2013;2(9):e60.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ray-Jones H, Eyre S, Barton A, Warren RB. One SNP at a time: moving beyond GWAS in psoriasis. J Invest Dermatol. 2016;136(3):567–73.PubMedGoogle Scholar
  46. 46.
    Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73.PubMedGoogle Scholar
  47. 47.
    Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007;19(6):652–7.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol. 2013;8:477–512.PubMedGoogle Scholar
  49. 49.
    Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43(6):1040–51.PubMedGoogle Scholar
  50. 50.
    Yang J, Sundrud MS, Skepner J, Yamagata T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol Sci. 2014;35(10):493–500.PubMedGoogle Scholar
  51. 51.
    Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32(5):605–15.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.PubMedGoogle Scholar
  54. 54.
    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452(7188):773–6.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–13.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Moutsopoulos NM, Konkel JE. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol. 2018;39(4):276–87.PubMedGoogle Scholar
  57. 57.
    Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46(4):562–76.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5):1016–25.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000. 2015;69(1):142–59.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012;337(6098):1115–9.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Cheng WC, Hughes FJ, Taams LS. The presence, function and regulation of IL-17 and Th17 cells in periodontitis. J Clin Periodontol. 2014;41(6):541–9.PubMedGoogle Scholar
  64. 64.
    Gaffen SL, Hajishengallis G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res. 2008;87(9):817–28.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Dutzan N, Konkel JE, Greenwell-Wild T, Moutsopoulos NM. Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol. 2016;9(5):1163–72.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Moutsopoulos NM, Kling HM, Angelov N, Jin W, Palmer RJ, Nares S, et al. Porphyromonas gingivalis promotes Th17 inducing pathways in chronic periodontitis. J Autoimmun. 2012;39(4):294–303.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Vernal R, Dutzan N, Hernandez M, Chandia S, Puente J, Leon R, et al. High expression levels of receptor activator of nuclear factor-kappa B ligand associated with human chronic periodontitis are mainly secreted by CD4+ T lymphocytes. J Periodontol. 2006;77(10):1772–80.PubMedGoogle Scholar
  68. 68.
    Cardoso CR, Garlet GP, Crippa GE, Rosa AL, Junior WM, Rossi MA, et al. Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease. Oral Microbiol Immunol. 2009;24(1):1–6.PubMedGoogle Scholar
  69. 69.
    Dutzan N, Gamonal J, Silva A, Sanz M, Vernal R. Over-expression of forkhead box P3 and its association with receptor activator of nuclear factor-kappa B ligand, interleukin (IL) -17, IL-10 and transforming growth factor-beta during the progression of chronic periodontitis. J Clin Periodontol. 2009;36(5):396–403.PubMedGoogle Scholar
  70. 70.
    Lester SR, Bain JL, Johnson RB, Serio FG. Gingival concentrations of interleukin-23 and -17 at healthy sites and at sites of clinical attachment loss. J Periodontol. 2007;78(8):1545–50.PubMedGoogle Scholar
  71. 71.
    Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Zhao L, Zhou Y, Xu Y, Sun Y, Li L, Chen W. Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients. J Clin Periodontol. 2011;38(6):509–16.PubMedGoogle Scholar
  73. 73.
    Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250:50–5.PubMedGoogle Scholar
  74. 74.
    Silva LM, Brenchley L, Moutsopoulos NM. Primary immunodeficiencies reveal the essential role of tissue neutrophils in periodontitis. Immunol Rev. 2019;287(1):226–35.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Moutsopoulos NM, Konkel J, Sarmadi M, Eskan MA, Wild T, Dutzan N, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med. 2014;6(229):229ra40.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Moutsopoulos NM, Zerbe CS, Wild T, Dutzan N, Brenchley L, DiPasquale G, et al. Interleukin-12 and Interleukin-23 blockade in leukocyte adhesion deficiency type 1. N Engl J Med. 2017;376(12):1141–6.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Moutsopoulos NM, Chalmers NI, Barb JJ, Abusleme L, Greenwell-Wild T, Dutzan N, et al. Subgingival microbial communities in leukocyte adhesion deficiency and their relationship with local immunopathology. PLoS Pathog. 2015;11(3):e1004698.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76.PubMedGoogle Scholar
  79. 79.
    Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673–82.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al. Induction and molecular signature of pathogenic TH17 cells. Nat Immunol. 2012;13(10):991–9.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–8.PubMedGoogle Scholar
  82. 82.
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198(12):1951–7.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest. 2006;116(5):1310–6.PubMedPubMedCentralGoogle Scholar
  84. 84.
    McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10(3):314–24.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011;12(6):560–7.PubMedGoogle Scholar
  86. 86.
    O’Shea JJ, Kanno Y, Chan AC. In search of magic bullets: the golden age of immunotherapeutics. Cell. 2014;157(1):227–40.PubMedPubMedCentralGoogle Scholar
  87. 87.
    O’Shea JJ, Laurence A, McInnes IB. Back to the future: oral targeted therapy for RA and other autoimmune diseases. Nat Rev Rheumatol. 2013;9(3):173–82.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Mease PJ. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr Opin Rheumatol. 2015;27(2):127–33.PubMedGoogle Scholar
  89. 89.
    Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol. 2018;201(6):1605–13.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371(4):326–38.PubMedGoogle Scholar
  91. 91.
    Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373(26):2534–48.PubMedGoogle Scholar
  92. 92.
    Miossec P. Update on interleukin-17: a role in the pathogenesis of inflammatory arthritis and implication for clinical practice. RMD Open. 2017;3(1):e000284.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863–9.PubMedGoogle Scholar
  94. 94.
    Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–700.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367(16):1519–28.PubMedGoogle Scholar
  96. 96.
    Langley RG, Tsai TF, Flavin S, Song M, Randazzo B, Wasfi Y, et al. Efficacy and safety of guselkumab in patients with psoriasis who have an inadequate response to ustekinumab: results of the randomized, double-blind, phase III NAVIGATE trial. Br J Dermatol. 2018;178(1):114–23.PubMedGoogle Scholar
  97. 97.
    Reich K, Papp KA, Blauvelt A, Tyring SK, Sinclair R, Thaci D, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390(10091):276–88.PubMedGoogle Scholar
  98. 98.
    Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL, Ho J, et al. Oral epithelial cells orchestrate innate type 17 responses to Candida albicans through the virulence factor candidalysin. Sci Immunol. 2017;2(17):eaam8834.Google Scholar
  99. 99.
    Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14(9):603–22.PubMedGoogle Scholar
  100. 100.
    Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25–36.PubMedGoogle Scholar
  101. 101.
    Hirahara K, Schwartz D, Gadina M, Kanno Y, O’Shea JJ. Targeting cytokine signaling in autoimmunity: back to the future and beyond. Curr Opin Immunol. 2016;43:89–97.PubMedGoogle Scholar
  102. 102.
    Dutzan N, Vernal R, Vaque JP, Garcia-Sesnich J, Hernandez M, Abusleme L, et al. Interleukin-21 expression and its association with proinflammatory cytokines in untreated chronic periodontitis patients. J Periodontol. 2012;83(7):948–54.PubMedGoogle Scholar
  103. 103.
    Dutzan N, Vernal R, Hernandez M, Dezerega A, Rivera O, Silva N, et al. Levels of interferon-gamma and transcription factor T-bet in progressive periodontal lesions in patients with chronic periodontitis. J Periodontol. 2009;80(2):290–6.PubMedGoogle Scholar
  104. 104.
    Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–48.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat Rev Immunol. 2014;14(12):783–95.PubMedGoogle Scholar
  106. 106.
    Huh JR, Leung MW, Huang P, Ryan DA, Krout MR, Malapaka RR, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORgammat activity. Nature. 2011;472(7344):486–90.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Cascao R, Vidal B, Raquel H, Neves-Costa A, Figueiredo N, Gupta V, et al. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun Rev. 2012;11(12):856–62.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Withers DR, Hepworth MR, Wang X, Mackley EC, Halford EE, Dutton EE, et al. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med. 2016;22(3):319–23.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nicolas Dutzan
    • 1
    Email author
  • Loreto Abusleme
    • 1
  • Niki Moutsopoulos
    • 2
  1. 1.Laboratory of Oral Microbiology and Laboratory for Craniofacial Translational ResearchFaculty of Dentistry, University of ChileSantiagoChile
  2. 2.Oral Immunity and Inflammation UnitNIDCR, NIHBethesdaUSA

Personalised recommendations