The Role of Advanced Imaging in Spinal Metastases

  • Sasan KarimiEmail author
  • Nicholas S. Cho
  • Kyung K. Peck
  • Andrei I. Holodny


Accurate diagnosis and assessment of spinal metastases are of critical importance for cancer patients because the spine is the most common site for skeletal metastases. Conventional imaging methods such as bone scan, positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT) are commonly utilized for diagnosing and monitoring treatment of spinal metastases. However, differential diagnoses and treatment response monitoring currently remain difficult with these methods. The development of advanced imaging techniques offers promising advantages to conventional methods through considerations of diffusion, perfusion, and other tumor microenvironment characteristics. These advanced imaging techniques include dynamic contrast-enhanced MRI (DCE MRI), which shows great potential for improving the management of spinal metastases by assessing tumor vascularity, as well as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), dual-energy CT, and CT myelography. This chapter will discuss how these techniques can be specifically utilized throughout a patient’s treatment timeline to enhance clinical care.


Spine metastases Conventional imaging Magnetic resonance imaging Computed tomography Perfusion MRI Dynamic contrast-enhanced MRI Diffusion-weighted imaging Diffusion tensor imaging Dual-energy CT CT myelography Hypervascular metastases Hypovascular metastases Fractures Chordoma Spinal cord injury Treatment response Diagnosis 


  1. 1.
    Perrin RG. Metastatic tumors of the axial spine. Curr Opin Oncol. 1992;4(3):525–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Solomou E, Kazantzi A, Romanos O, Kardamakis D. Magnetic resonance imaging of metastatic bone disease. In: Kardamakis D, Vassiliou V, Chow E, editors. Bone metastases: a translational and clinical approach. Dordrecht: Springer; 2009. p. 163–81.CrossRefGoogle Scholar
  3. 3.
    Carroll KW, Feller JF, Tirman PF. Useful internal standards for distinguishing infiltrative marrow pathology from hematopoietic marrow at MRI. J Magn Reson Imaging: JMRI. 1997;7(2):394–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Breger RK, Williams AL, Daniels DL, Czervionke LF, Mark LP, Haughton VM, et al. Contrast enhancement in spinal MR imaging. AJR Am J Roentgenol. 1989;153(2):387–91.PubMedCrossRefGoogle Scholar
  5. 5.
    Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull’s-eyes and halos: useful MR discriminators of osseous metastases. Radiology. 1993;188(1):249–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Mirowitz SA, Apicella P, Reinus WR, Hammerman AM. MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR Am J Roentgenol. 1994;162(1):215–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Moulopoulos LA, Maris TG, Papanikolaou N, Panagi G, Vlahos L, Dimopoulos MA. Detection of malignant bone marrow involvement with dynamic contrast-enhanced magnetic resonance imaging. Ann Oncol. 2003;14(1):152–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Gaudino S, Martucci M, Colantonio R, Lozupone E, Visconti E, Leone A, et al. A systematic approach to vertebral hemangioma. Skelet Radiol. 2015;44(1):25–36.CrossRefGoogle Scholar
  9. 9.
    O’Sullivan GJ, Carty FL, Cronin CG. Imaging of bone metastasis: an update. World J Radiol. 2015;7(8):202–11.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Otake S, Mayr NA, Ueda T, Magnotta VA, Yuh WTC. Radiation-induced changes in MR signal intensity and contrast enhancement of lumbosacral vertebrae: do changes occur only inside the radiation therapy field? Radiology. 2002;222(1):179–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Yankelevitz DF, Henschke CI, Knapp PH, Nisce L, Yi Y, Cahill P. Effect of radiation therapy on thoracic and lumbar bone marrow: evaluation with MR imaging. AJR Am J Roentgenol. 1991;157(1):87–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Montazel JL, Divine M, Lepage E, Kobeiter H, Breil S, Rahmouni A. Normal spinal bone marrow in adults: dynamic gadolinium-enhanced MR imaging. Radiology. 2003;229(3):703–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Maccauro G, Spinelli MS, Mauro S, Perisano C, Graci C, Rosa MA. Physiopathology of spine metastasis. Int J Surg Oncol. 2011;2011:107969.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Arevalo-Perez J, Peck K, Young R, Holodny A, Karimi S, Lyo J. Dynamic contrast- enhanced perfusion MRI and diffusion-weighted imaging in grading of gliomas. J Neuroimaging. 2015;25(5):792–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Thomas AA, Arevalo-Perez J, Kaley T, Lyo J, Peck KK, Shi W, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neuro-Oncol. 2015;125(1):183–90.CrossRefGoogle Scholar
  16. 16.
    Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. American Journal of Neuroradiology. 2009;30(2):367.PubMedCrossRefGoogle Scholar
  17. 17.
    Hatzoglou V, Ulaner GA, Zhang Z, Beal K, Holodny AI, Young RJ. Comparison of the effectiveness of MRI perfusion and Fluorine-18 FDG PET-CT for differentiating radiation injury from viable brain tumor. Clin Imaging. 2013;37(3):451–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging: JMRI. 1999;10(3):223–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Khadem NR, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, et al. Characterizing hypervascular and hypovascular metastases and normal bone marrow of the spine using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2012;33(11):2178–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen WT, Shih TT, Chen RC, Lo HY, Chou CT, Lee JM, et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging: JMRI. 2002;15(3):308–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Saranathan M, Rettmann DW, Hargreaves BA, Clarke SE, Vasanawala SS. Differential subsampling with Cartesian ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging. 2012;35(6):1484–92.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Saha A, Peck KK, Lis E, Holodny AI, Yamada Y, Karimi S. Magnetic resonance perfusion characteristics of hypervascular renal and hypovascular prostate spinal metastases: clinical utilities and implications. Spine. 2014;39(24):E1433–40.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mazura JC, Karimi S, Pauliah M, Banihashemi MA, Gobin YP, Bilsky MH, et al. Dynamic contrast-enhanced magnetic resonance perfusion compared with digital subtraction angiography for the evaluation of extradural spinal metastases: a pilot study. Spine. 2014;39(16):E950–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics: a review publication of the Radiological Society of North America, Inc. 2003;23(1):179–87.CrossRefGoogle Scholar
  25. 25.
    Croarkin E. Osteopenia in the patient with cancer. Phys Ther. 1999;79(2):196–201.PubMedCrossRefGoogle Scholar
  26. 26.
    Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-Deene Y, Kunnen M, Bloem JL. Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging: JMRI. 1996;6(2):311–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Arevalo-Perez J, Peck KK, Lyo JK, Holodny AI, Lis E, Karimi S. Differentiating benign from malignant vertebral fractures using T1 -weighted dynamic contrast-enhanced MRI. J Magn Reson Imaging: JMRI. 2015;42(4):1039–47.PubMedCrossRefGoogle Scholar
  28. 28.
    Morales KA, Arevalo-Perez J. Differentiating atypical hemangiomas and metastatic vertebral lesions: the role of T1-weighted dynamic contrast-enhanced MRI. AJNR Am J Neuroradiol. 2018;39(5):968–73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–25.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lis E, Saha A, Peck KK, Zatcky J, Zelefsky MJ, Yamada Y, et al. Dynamic contrast- enhanced magnetic resonance imaging of osseous spine metastasis before and 1 hour after high- dose image-guided radiation therapy. Neurosurg Focus. 2017;42(1):E9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Chu S, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, et al. Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging: evaluation of tumor response to radiation therapy. Spine. 2013;38(22):E1418–24.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kumar KA, Peck KK, Karimi S, Lis E, Holodny AI, Bilsky MH, et al. A pilot study evaluating the use of dynamic contrast-enhanced perfusion MRI to predict local recurrence after radiosurgery on spinal metastases. Technol Cancer Res Treat. 2017;1533034617705715Google Scholar
  33. 33.
    Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012;13(2):e69–76.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lang N, Su MY, Xing X, Yu HJ, Yuan H. Morphological and dynamic contrast enhanced MR imaging features for the differentiation of chordoma and giant cell tumors in the axial skeleton. J Magn Reson Imaging: JMRI. 2017;45(4):1068–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Santos P, Peck KK. T1-weighted dynamic contrast-enhanced MR perfusion imaging characterizes tumor response to radiation therapy in chordoma. AJNR Am J Neuroradiol. 2017;38(11):2210–6.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    White NS, McDonald C, Farid N, Kuperman J, Karow D, Schenker-Ahmed NM, et al. Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014;74(17):4638–52.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Surov A, Meyer HJ, Wienke A. Correlation between apparent diffusion coefficient (ADC) and cellularity is different in several tumors: a meta-analysis. Oncotarget. 2017;8(35):59492–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Khoo MM, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skelet Radiol. 2011;40(6):665–81.CrossRefGoogle Scholar
  39. 39.
    Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol. 2018;28(7):2890–902.PubMedCrossRefGoogle Scholar
  40. 40.
    Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225(3):889–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Pozzi G, Albano D. Solid bone tumors of the spine: diagnostic performance of apparent diffusion coefficient measured using diffusion-weighted MRI using histology as a reference standard. J Magn Reson Imaging: JMRI. 2018;47(4):1034–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Pozzi G, Garcia Parra C, Stradiotti P, Tien TV, Luzzati A, Zerbi A. Diffusion-weighted MR imaging in differentiation between osteoporotic and neoplastic vertebral fractures. Eur Spine J. 2012;21(Suppl 1):S123–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Shi YJ, Li XT, Zhang XY, Liu YL, Tang L, Sun YS. Differential diagnosis of hemangiomas from spinal osteolytic metastases using 3.0 T MRI: comparison of T1-weighted imaging, chemical-shift imaging, diffusion-weighted and contrast-enhanced imaging. Oncotarget. 2017;8(41):71095–104.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23(6):906–12.PubMedGoogle Scholar
  45. 45.
    Cappabianca S, Capasso R, Urraro F, Izzo A, Raucci A, Di Franco R, et al. Assessing response to radiation therapy treatment of bone metastases: short-term followup of radiation therapy treatment of bone metastases with diffusion-weighted magnetic resonance imaging. Journal of Radiotherapy. 2014;2014:8.CrossRefGoogle Scholar
  46. 46.
    Reischauer C, Froehlich JM, Koh DM, Graf N, Padevit C, John H, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps--initial observations. Radiology. 2010;257(2):523–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Dale BM, Braithwaite AC, Boll DT, Merkle EM. Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Investig Radiol. 2010;45(2):104–8.CrossRefGoogle Scholar
  48. 48.
    Hackländer T, Scharwächter C, Golz R, Mertens H. Value of diffusion-weighted imaging for diagnosing vertebral metastases due to prostate cancer in comparison to other primary tumors. Rofo. 2006;178(4):416–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Oztekin O, Ozan E, Hilal Adibelli Z, Unal G, Abali Y. SSH-EPI diffusion-weighted MR imaging of the spine with low b values: is it useful in differentiating malignant metastatic tumor infiltration from benign fracture edema? Skelet Radiol. 2009;38(7):651–8.CrossRefGoogle Scholar
  50. 50.
    Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics: a review publication of the Radiological Society of North America, Inc. 2014;34(5):1163–77.CrossRefGoogle Scholar
  51. 51.
    Castillo M, Arbelaez A, Smith JK, Fisher LL. Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol. 2000;21(5):948–53.PubMedGoogle Scholar
  52. 52.
    Messiou C, Collins DJ, Giles S, de Bono JS, Bianchini D, de Souza NM. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21(10):2169–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Egger K, Hohenhaus M, Van Velthoven V, Heil S, Urbach H. Spinal diffusion tensor tractography for differentiation of intramedullary tumor-suspected lesions. Eur J Radiol. 2016;85(12):2275–80.PubMedCrossRefGoogle Scholar
  54. 54.
    Choudhri AF, Whitehead MT, Klimo P Jr, Montgomery BK, Boop FA. Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology. 2014;56(2):169–74.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Keřkovský M, Zitterbartová J, Pour L, Šprláková-Puková A, Mechl M. Diffusion tensor imaging in radiation-induced myelopathy. J Neuroimaging. 2014;25(5):836–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Crombe A, Alberti N, Hiba B, Uettwiller M, Dousset V, Tourdias T. Cervical spinal cord DTI is improved by reduced FOV with specific balance between the number of diffusion gradient directions and averages. Am J Neuroradiol. 2016;37(11):2163.PubMedCrossRefGoogle Scholar
  57. 57.
    Sudha SP, Gopalakrishnan MS, Saravanan K. The role of CT myelography in sparing the spinal cord during definitive radiotherapy in vertebral hemangioma. J Appl Clin Med Phys. 2017;18(5):174–7.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wolman DN, Patel BP, Wintermark M, Heit JJ. Dual-energy computed tomography applications in neurointervention. J Comput Assist Tomogr. 2018;42:831.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sasan Karimi
    • 1
    Email author
  • Nicholas S. Cho
    • 1
    • 2
  • Kyung K. Peck
    • 3
  • Andrei I. Holodny
    • 1
  1. 1.Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Medical Scientist Training ProgramDavid Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.Department of Medical Physics and RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations